Piezoelectric materials, which respond mechanically to applied electric field and vice versa, are essential for electromechanical transducers. Previous theoretical analyses have shown that high piezoelectricity in perovskite oxides is associated with a flat thermodynamic energy landscape connecting two or more ferroelectric phases. Here, guided by phenomenological theories and phase-field simulations, we propose an alternative design strategy to commonly used morphotropic phase boundaries to further flatten the energy landscape, by judiciously introducing local structural heterogeneity to manipulate interfacial energies (that is, extra interaction energies, such as electrostatic and elastic energies associated with the interfaces). To validate this, we synthesize rare-earth-doped Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT), as rare-earth dopants tend to change the local structure of Pb-based perovskite ferroelectrics. We achieve ultrahigh piezoelectric coefficients d33 of up to 1,500 pC N−1 and dielectric permittivity ε33/ε0 above 13,000 in a Sm-doped PMN–PT ceramic with a Curie temperature of 89 °C. Our research provides a new paradigm for designing material properties through engineering local structural heterogeneity, expected to benefit a wide range of functional materials.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Jaffe, B., Cook, W. R. & Jaffe, H. Piezoelectric Ceramics (Academic, London, 1971).

  2. 2.

    Zhang, S. J. et al. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers–a review. Prog. Mater. Sci. 68, 1–66 (2015).

  3. 3.

    Rödel, J. et al. Perspective on the development of lead‐free piezoceramics. J. Am. Ceram. Soc. 92, 1153–1177 (2009).

  4. 4.

    Lines, M. E., & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, Oxford, 1977).

  5. 5.

    Damjanovic, D. Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J. Am. Ceram. Soc. 88, 2663–2676 (2005).

  6. 6.

    Li, F., Jin, L., Xu, Z. & Zhang, S. J. Electrostrictive effect in ferroelectrics: An alternative approach to improve piezoelectricity. Appl. Phys. Rev. 1, 011103 (2014).

  7. 7.

    Fu, H. & Cohen, R. E. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403, 281–283 (2000).

  8. 8.

    Wu, Z. & Cohen, R. E. Pressure-induced anomalous phase transitions and colossal enhancement of piezoelectricity in PbTiO3. Phys. Rev. Lett. 95, 037601 (2005).

  9. 9.

    Nahas, Y. et al. Microscopic origins of the large piezoelectricity of lead free (Ba,Ca)(Zr,Ti) O3. Nat. Commun. 8, 15944 (2017).

  10. 10.

    Liu, W. & Ren, X. Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009).

  11. 11.

    Sluka, T., Tagantsev, A. K., Damjanovic, D., Gureev, M. & Setter, N. Enhanced electromechanical response of ferroelectrics due to charged domain walls. Nat. Commun. 3, 748 (2012).

  12. 12.

    Budimir, M., Damjanovic, D. & Setter, N. Piezoelectric response and free-energy instability in the perovskite crystals BaTiO3, PbTiO3, and Pb(Zr,Ti)O3. Phys. Rev. B 73, 174106 (2006).

  13. 13.

    Ahart, M. et al. Origin of morphotropic phase boundaries in ferroelectrics. Nature 451, 545–548 (2008).

  14. 14.

    Cross, L. E. Relaxor ferroelectrics. Ferroelectrics 76, 241–276 (1987).

  15. 15.

    Kutnjak, Z., Petzelt, J. & Blinc, R. The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441, 956–959 (2006).

  16. 16.

    Takenaka, H., Grinberg, I., Liu, S. & Rappe, A. M. Slush-like polar structures in single-crystal relaxors. Nature 546, 391–395 (2017).

  17. 17.

    Li, F. et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat. Commun. 7, 13807 (2016).

  18. 18.

    Manley, M. E. et al. Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations. Sci. Adv. 2, e1501814 (2016).

  19. 19.

    Phelan, D. et al. Role of random electric fields in relaxors. Proc. Natl Acad. Sci. USA 111, 1754–1759 (2014).

  20. 20.

    Xu, G. Y., Wen, J. S., Stock, C. & Gehring, P. M. Phase instability induced by polar nanoregions in a relaxor ferroelectric system. Nat. Mater. 7, 562–566 (2008).

  21. 21.

    Park, S. E. & Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997).

  22. 22.

    Service, R. F. Materials science - shape-changing crystals get shiftier. Science 275, 1878 (1997).

  23. 23.

    Kleemann, W. Relaxor ferroelectrics: Cluster glass ground state via random fields and random bonds. Phys. Status Solidi B 251, 1993–2002 (2014).

  24. 24.

    Samara, G. A. The relaxational properties of compositionally disordered ABO3 perovskites. J. Phys. Condens. Matter 15, R367–R411 (2003).

  25. 25.

    Chen, J., Chan, H. M. & Harmer, M. P. Ordering structure and dielectric properties of undoped and La/Na‐doped Pb (Mg1/3Nb2/3)O3. J. Am. Ceram. Soc. 72, 593–598 (1989).

  26. 26.

    Tang, H. et al. Investigation of dielectric and piezoelectric properties in Pb (Ni1/3Nb2/3)O3–PbHfO3–PbTiO3 ternary system. J. Am. Eur. Soc. 33, 2491–2497 (2013).

  27. 27.

    Damjanovic, D. Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics. J. Appl. Phys. 82, 1788–1797 (1997).

  28. 28.

    Cannata, J. M., Williams, J. A., Zhou, Q., Ritter, T. A. & Shung, K. K. Development of a 35-MHz piezo-composite ultrasound array for medical imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 53, 224–236 (2006).

  29. 29.

    Jia, C. L. et al. Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nat. Mater. 6, 64–69 (2007).

  30. 30.

    Noheda, B., Cox, D. E., Shirane, G., Gao, J. & Ye, Z. G. Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3. Phys. Rev. B 66, 054104 (2002).

  31. 31.

    Bokov, A. A. & Ye, Z.-G. Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31–52 (2006).

  32. 32.

    Viehland, D., Jang, S. J., Cross, L. E. & Wuttig, M. Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J. Appl. Phys. 68, 2916–2921 (1990).

  33. 33.

    Nan, C. W., Bichurin, M. I., Dong, S., Viehland, D. & Srinivasan, G. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).

  34. 34.

    Ji, Y. C. et al. Ferroic glasses. npj Comput. Mater. 3, 43 (2017).

  35. 35.

    Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

Download references


F.L. and T.R.S. acknowledge the ONR support. F.L. also acknowledges the support by the National Natural Science Foundation of China (grant numbers 51572214 and 51761145024) and the 111 Project (B14040). S.Z. acknowledges the support from ONRG (N62909-16-1-2126) and ARC (FT140100698). L.-Q.C. is supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-07ER46417. Z.C. thanks M. Cabral from North Carolina State University for the sample preparation guidance and discussions.

Author information

Author notes

  1. These authors contributed equally: Fei Li, Dabin Lin, Zibin Chen and Zhenxiang Cheng.


  1. Materials Research Institute, Pennsylvania State University, University Park, PA, USA

    • Fei Li
    • , Dabin Lin
    • , ChunChun Li
    • , Long-Qing Chen
    • , Thomas R. Shrout
    •  & Shujun Zhang
  2. Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi’an Jiaotong University, Xi’an, China

    • Fei Li
    •  & Zhuo Xu
  3. School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, New South Wales, Australia

    • Zibin Chen
    • , Qianwei Huang
    •  & Xiaozhou Liao
  4. Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, New South Wales, Australia

    • Zhenxiang Cheng
    • , Jianli Wang
    •  & Shujun Zhang


  1. Search for Fei Li in:

  2. Search for Dabin Lin in:

  3. Search for Zibin Chen in:

  4. Search for Zhenxiang Cheng in:

  5. Search for Jianli Wang in:

  6. Search for ChunChun Li in:

  7. Search for Zhuo Xu in:

  8. Search for Qianwei Huang in:

  9. Search for Xiaozhou Liao in:

  10. Search for Long-Qing Chen in:

  11. Search for Thomas R. Shrout in:

  12. Search for Shujun Zhang in:


The project was conceived and designed by F.L., S.Z., L.-Q.C. and T.R.S.; F.L. and L.-Q.C. performed the phase-field simulations; F.L. and D.L. prepared ceramic samples, and performed the dielectric and piezoelectric measurements; Z. Chen, Q.H. and X.L. performed TEM experiments; Z. Cheng., J.W. and C.C.L. performed XRD measurements; F.L., S.Z., L.-Q.C. and T.R.S. wrote the manuscript, and all authors discussed the results.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Fei Li or Long-Qing Chen or Shujun Zhang.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–13

About this article

Publication history




Issue Date



Further reading