Cell-geometry-dependent changes in plasma membrane order direct stem cell signalling and fate


Cell size and shape affect cellular processes such as cell survival, growth and differentiation1,2,3,4, thus establishing cell geometry as a fundamental regulator of cell physiology. The contributions of the cytoskeleton, specifically actomyosin tension, to these effects have been described, but the exact biophysical mechanisms that translate changes in cell geometry to changes in cell behaviour remain mostly unresolved. Using a variety of innovative materials techniques, we demonstrate that the nanostructure and lipid assembly within the cell plasma membrane are regulated by cell geometry in a ligand-independent manner. These biophysical changes trigger signalling events involving the serine/threonine kinase Akt/protein kinase B (PKB) that direct cell-geometry-dependent mesenchymal stem cell differentiation. Our study defines a central regulatory role by plasma membrane ordered lipid raft microdomains in modulating stem cell differentiation with potential translational applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Cell geometry induces changes in cytoskeletal arrangement and cell contractility.
Fig. 2: Cell geometry regulates plasma membrane morphology and topography.
Fig. 3: Signal intensity of lipid raft markers is dependent on cell geometry.
Fig. 4: Akt recruitment to the plasma membrane and activation are dependent on cell geometry.
Fig. 5: Lipid rafts and Akt signalling mediate cell-geometry-dependent hMSC differentiation.


  1. 1.

    Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    Article  Google Scholar 

  2. 2.

    Kilian, Ka, Bugarija, B., Lahn, B. T. & Mrksich, M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl Acad. Sci. USA 107, 4872–4877 (2010).

    Article  Google Scholar 

  3. 3.

    McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    Article  Google Scholar 

  4. 4.

    Aragona, M. et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154, 1047–1059 (2013).

    Article  Google Scholar 

  5. 5.

    Head, B. P., Patel, H. H. & Insel, P. A. Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochim. Biophys. Acta 1838, 532–545 (2014).

    Article  Google Scholar 

  6. 6.

    Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39 (2000).

    Article  Google Scholar 

  7. 7.

    Liu, A. P. & Fletcher, D. A. Actin polymerization serves as a membrane domain switch in model lipid bilayers. Biophys. J. 91, 4064–4070 (2006).

    Article  Google Scholar 

  8. 8.

    Gaus, K., Le Lay, S., Balasubramanian, N. & Schwartz, M. Integrin-mediated adhesion regulates membrane order. J. Cell Biol. 174, 725–734 (2006).

    Article  Google Scholar 

  9. 9.

    Head, B. P. et al. Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components. J. Biol. Chem. 281, 26391–26399 (2006).

    Article  Google Scholar 

  10. 10.

    Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010).

    Article  Google Scholar 

  11. 11.

    Head, B. P. & Insel, P. A. Do caveolins regulate cells by actions outside of caveolae? Trends Cell Biol. 17, 51–57 (2007).

    Article  Google Scholar 

  12. 12.

    Palazzo, A. F., Eng, C. H., Schlaepfer, D. D., Marcantonio, E. E. & Gundersen, G. G. Localized stabilization of microtubules by integrin- and FAK-facilitated Rho signaling. Science 303, 836–839 (2004).

    Article  Google Scholar 

  13. 13.

    Kamiguchi, H. The region-specific activities of lipid rafts during axon growth and guidance. J. Neurochem. 98, 330–335 (2006).

    Article  Google Scholar 

  14. 14.

    Blank, N. et al. Cholera toxin binds to lipid rafts but has a limited specificity for ganglioside GM1. Immunol. Cell Biol. 85, 378–382 (2007).

    Article  Google Scholar 

  15. 15.

    Wüstner, D. Fluorescent sterols as tools in membrane biophysics and cell biology. Chem. Phys. Lipids 146, 1–25 (2007).

    Article  Google Scholar 

  16. 16.

    Parton, R. G. & Simons, K. The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 8, 185–194 (2007).

    Article  Google Scholar 

  17. 17.

    Sezgin, E. et al. Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat. Protoc. 7, 1042–1051 (2012).

    Article  Google Scholar 

  18. 18.

    Gao, X. & Zhang, J. Spatiotemporal analysis of differential Akt regulation in plasma membrane microdomains. Mol. Biol. Cell 19, 4366–4373 (2008).

    Article  Google Scholar 

  19. 19.

    Lasserre, R. et al. Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nat. Chem. Biol. 4, 538–547 (2008).

    Article  Google Scholar 

  20. 20.

    Gao, X. et al. PI3K/Akt signaling requires spatial compartmentalization in plasma membrane microdomains. Proc. Natl Acad. Sci. USA 108, 14509–14514 (2011).

    Article  Google Scholar 

  21. 21.

    Calay, D. et al. Inhibition of Akt signaling by exclusion from lipid rafts in normal and transformed epidermal keratinocytes. J. Investigative Dermatol. 130, 1136–1145 (2010).

    Article  Google Scholar 

  22. 22.

    Manning, B. D. & Cantley, L. C. AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274 (2007).

    Article  Google Scholar 

  23. 23.

    Schnitzer, J. E., Oh, P., Pinney, E. & Allard, J. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J. Cell Biol. 127, 1217–1232 (1994).

    Article  Google Scholar 

  24. 24.

    Hirai, H. et al. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol. Cancer Therapeutics 9, 1956–1967 (2010).

    Article  Google Scholar 

  25. 25.

    Vanhaesebroeck, B., Stephens, L. & Hawkins, P. PI3K signalling: the path to discovery and understanding. Nat. Rev. Mol. Cell Biol. 13, 195–203 (2012).

    Article  Google Scholar 

  26. 26.

    Müller, P., Langenbach, A., Kaminski, A. & Rychly, J. Modulating the actin cytoskeleton affects mechanically induced signal transduction and differentiation in mesenchymal stem cells. PLoS ONE 8, 1–8 (2013).

    Google Scholar 

  27. 27.

    Stevens, M. M. & George, J. H. Exploring and engineering the cell surface interface. Science 310, 1135–1138 (2005).

    Article  Google Scholar 

  28. 28.

    Place, E. S., Evans, N. D. & Stevens, M. M. Complexity in biomaterials for tissue engineering. Nat. Mater. 8, 457–470 (2009).

    Article  Google Scholar 

  29. 29.

    von Erlach, T. C., Hedegaard, M. A. B. & Stevens, M. M. High resolution Raman spectroscopy mapping of stem cell micropatterns. Analyst 140, 1798–1803 (2015).

    Article  Google Scholar 

  30. 30.

    Bertazzo, S., von Erlach, T., Goldoni, S., Çandarlıoğlu, P. L. & Stevens, M. M. Correlative light-ion microscopy for biological applications. Nanoscale 4, 2851–2854 (2012).

    Article  Google Scholar 

  31. 31.

    Tan, J. L., Liu, W., Nelson, C. M., Raghavan, S. & Chen, C. S. Simple approach to micropattern cells on common culture substrates by tuning substrate wettability. Tissue Eng. 10, 865–72 (2004).

    Article  Google Scholar 

  32. 32.

    Horejs, C. M. et al. Preventing tissue fibrosis by local biomaterials interfacing of specific cryptic extracellular matrix information. Nat. Commun. 8, 1–15 (2017).

    Article  Google Scholar 

  33. 33.

    Leight, J. L., Wozniak, M. A., Chen, S., Lynch, M. L. & Chen, C. S. Matrix rigidity regulates a switch between TGF-1-induced apoptosis and epithelial-mesenchymal transition. Mol. Biol. Cell 23, 781–791 (2012).

    Article  Google Scholar 

  34. 34.

    Harris, A. R. & Charras, G. T. Experimental validation of atomic force microscopy-based cell elasticity measurements. Nanotechnology 22, 1–10 (2011).

    Google Scholar 

  35. 35.

    Herrmann, I. K. et al. Differentiating sepsis from non-infectious systemic inflammation based on microvesicle-bacteria aggregation. Nanoscale 7, 13511–13520 (2015).

    Article  Google Scholar 

Download references


We thank H. M. Textor and F. Anderegg (ETH Zurich) for providing silicon masters for micro-contact printing as well as S. Rothery for training and guidance regarding TIRF microscopy (FILM facility at Imperial College London). T.C.v.E. was supported by an EPSRC DTA PhD award. S.B. was supported by the Rosetrees Trust and the Stoneygate Trust and the Junior Research Fellowship scheme at Imperial College London. M.M.S. gratefully acknowledges ERC starting grant “Naturale” for funding (206807), Wellcome Trust Senior Investigator Award (098411/Z/12/Z) and the Rosetrees Trust. A.D.R.H. gratefully acknowledges ERC starting grant "ForceRegulation' (282051).

Author information




T.C.v.E. designed experiments, developed the substrates and conducted experiments, analysed and interpreted the data and wrote the manuscript. S.B. designed and carried out ion and electron microscopy experiments and analysed the data. M.A.W. conducted viral transfection experiments and revised the manuscript. C.K. performed 3D plasma membrane reconstruction and analysis. B.K.R. and S.A. conducted AFM measurements. C.-M.H. carried out western blots. C.S.C. revised the manuscript and consulted in experimental design. A.D.R.H. revised the manuscript and supervised S.A. H.A. helped with hMSC cultivation and differentiation experiments and revised the manuscript. S.A.M. helped with cell micropattern preparations and revised the manuscript. S.G. supervised the project, helped in experimental design, data analysis and interpretation, and co-wrote the manuscript. M.M.S. supervised the project, co-wrote the manuscript and helped in experimental design and data interpretation.

Corresponding authors

Correspondence to Silvia Goldoni or Molly M. Stevens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

von Erlach, T.C., Bertazzo, S., Wozniak, M.A. et al. Cell-geometry-dependent changes in plasma membrane order direct stem cell signalling and fate. Nature Mater 17, 237–242 (2018). https://doi.org/10.1038/s41563-017-0014-0

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing