Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide meta-analysis, functional genomics and integrative analyses implicate new risk genes and therapeutic targets for anxiety disorders

Subjects

Abstract

Anxiety disorders are the most prevalent mental disorders. However, the genetic etiology of anxiety disorders remains largely unknown. Here we conducted a genome-wide meta-analysis on anxiety disorders by including 74,973 (28,392 proxy) cases and 400,243 (146,771 proxy) controls. We identified 14 risk loci, including 10 new associations near CNTNAP5, MAP2, RAB9BP1, BTN1A1, PRR16, PCLO, PTPRD, FARP1, CDH2 and RAB27B. Functional genomics and fine-mapping pinpointed the potential causal variants, and expression quantitative trait loci analysis revealed the potential target genes regulated by the risk variants. Integrative analyses, including transcriptome-wide association study, proteome-wide association study and colocalization analyses, prioritized potential causal genes (including CTNND1 and RAB27B). Evidence from multiple analyses revealed possibly causal genes, including RAB27B, BTN3A2, PCLO and CTNND1. Finally, we showed that Ctnnd1 knockdown affected dendritic spine density and resulted in anxiety-like behaviours in mice, revealing the potential role of CTNND1 in anxiety disorders. Our study identified new risk loci, potential causal variants and genes for anxiety disorders, providing insights into the genetic architecture of anxiety disorders and potential therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Manhattan plot of the GWAS meta-analysis.
Fig. 2: LocusZoom plots for six GWS association loci.
Fig. 3: Results of the reporter gene assays.
Fig. 4: Transcriptome-wide and proteome-wide association results.
Fig. 5: Gene prioritization results.
Fig. 6: Ctnnd1 regulates dendritic spine density, cognitive function and anxiety-like behaviours.

Similar content being viewed by others

Data availability

The genome-wide summary statistics of UK Biobank were downloaded from https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=140. The genome-wide summary statistics of iPSYCH were downloaded from https://ipsych.dk/fileadmin/ipsych.dk/Downloads/daner_woautism_ad_sd8-sd6_woautismad_cleaned.gz. The genome-wide summary statistics of ANGST were downloaded from https://figshare.com/ndownloader/articles/14842689/versions/1. The genome-wide summary statistics of FinnGen were downloaded from https://r4.risteys.finngen.fi/phenocode/F5_ALLANXIOUS. The genome-wide summary statistics of the MVP were downloaded from dbGaP (dbGaP Study Accession, phs001672.v9.p1) at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001672.v9.p1. The SNP-expression weights of PsychENCODE used in this study were downloaded from http://resource.psychencode.org/. The processed protein weight files were downloaded from https://www.synapse.org/ (Synapse ID: syn9884314 and syn23245237). The PsychENCODE cis-eQTL data were downloaded from the SMR website (https://yanglab.westlake.edu.cn/data/SMR/PsychENCODE_cis_eqtl_HCP100_summary.tar.gz). The gene expression data used for MAGMA were from the GTEx consortium, GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9. All Gene Ontology terms (including cellular components, biological processes and molecular functions) and KEGG pathway gene sets were downloaded from the MSigDB database (https://www.gsea-msigdb.org/gsea/msigdb/human/collections.jsp#C5). The CMC eQTL data were downloaded from Synapse (https://www.synapse.org//#!Synapse:syn4622659). The genome-wide summary statistics of the meta-analysis can be obtained at https://doi.org/10.6084/m9.figshare.23659653.v1. Source data are provided with this paper.

Code availability

GWAS meta-analysis was done using the inverse-variance-based fixed-effects and random-effects models meta-analysis implemented in PLINK v.1.09 (https://www.cog-genomics.org/plink/). FUMA v.1.3.7 was used to define the risk loci, with the default parameters (https://fuma.ctglab.nl/). LDSC (https://github.com/bulik/ldsc) was used to estimate the SNP-based heritability and pairwise genetic correlations between the GWASs. FIMO was used to compare the derived binding motifs with the publicly available PWM and the best-matched motifs (https://meme-suite.org/meme/tools/fimo). FINEMAP v.1.4.1 (http://www.christianbenner.com/) and PAINTOR (https://github.com/gkichaev/PAINTOR_V3.0) were used for statistical fine-mapping. The R package TwoSampleMR was used to perform two-sample Mendelian randomization analysis (v.0.5.6, https://mrcieu.github.io/TwoSampleMR/). Other custom codes can be accessed at https://doi.org/10.5281/zenodo.8162792 (ref. 146).

References

  1. Kessler, R. C. et al. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 593–602 (2005).

    Article  PubMed  Google Scholar 

  2. Kessler, R. C. et al. Prevalence, persistence, and sociodemographic correlates of DSM-IV disorders in the National Comorbidity Survey Replication Adolescent Supplement. Arch. Gen. Psychiatry 69, 372–380 (2012).

    Article  PubMed  Google Scholar 

  3. Huang, Y. et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study. Lancet Psychiatry 6, 211–224 (2019).

    Article  PubMed  Google Scholar 

  4. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789–1858 (2018).

    Article  Google Scholar 

  5. Craske, M. G. et al. Anxiety disorders. Nat. Rev. Dis. Primers 3, 17024 (2017).

    Article  PubMed  Google Scholar 

  6. Grupe, D. W. & Nitschke, J. B. Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat. Rev. Neurosci. 14, 488–501 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roozendaal, B., McEwen, B. S. & Chattarji, S. Stress, memory and the amygdala. Nat. Rev. Neurosci. 10, 423–433 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Janak, P. H. & Tye, K. M. From circuits to behaviour in the amygdala. Nature 517, 284–292 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Adhikari, A. et al. Basomedial amygdala mediates top-down control of anxiety and fear. Nature 527, 179–185 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. Tye, K. M. et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471, 358–362 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Liu, W. Z. et al. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat. Commun. 11, 2221 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Hettema, J. M., Neale, M. C. & Kendler, K. S. A review and meta-analysis of the genetic epidemiology of anxiety disorders. Am. J. Psychiatry 158, 1568–1578 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Shimada-Sugimoto, M., Otowa, T. & Hettema, J. M. Genetics of anxiety disorders: genetic epidemiological and molecular studies in humans. Psychiatry Clin. Neurosci. 69, 388–401 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Kendler, K. S. Twin studies of psychiatric illness: an update. Arch. Gen. Psychiatry 58, 1005–1014 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Lam, M. et al. Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat. Genet. 51, 1670–1678 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Levey, D. F. et al. Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nat. Neurosci. 24, 954–963 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Otowa, T. et al. Meta-analysis of genome-wide association studies of anxiety disorders. Mol. Psychiatry 21, 1391–1399 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Purves, K. L. et al. A major role for common genetic variation in anxiety disorders. Mol. Psychiatry 25, 3292–3303 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Levey, D. F. et al. Reproducible genetic risk loci for anxiety: results from approximately 200,000 participants in the Million Veteran Program. Am. J. Psychiatry 177, 223–232 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Meier, S. M. et al. Genetic variants associated with anxiety and stress-related disorders: a genome-wide association study and mouse-model study. JAMA Psychiatry 76, 924–932 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ruscio, A. M. et al. Cross-sectional comparison of the epidemiology of DSM-5 generalized anxiety disorder across the globe. JAMA Psychiatry 74, 465–475 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schiele, M. A. & Domschke, K. [Separation anxiety disorder]. Nervenarzt 92, 426–432 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. de Jonge, P. et al. Cross-national epidemiology of panic disorder and panic attacks in the world mental health surveys. Depress. Anxiety 33, 1155–1177 (2016).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  24. Stein, D. J. et al. The cross-national epidemiology of social anxiety disorder: data from the World Mental Health Survey Initiative. BMC Med. 15, 143 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wardenaar, K. J. et al. The cross-national epidemiology of specific phobia in the World Mental Health Surveys. Psychol. Med. 47, 1744–1760 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roest, A. M. et al. A comparison of DSM-5 and DSM-IV agoraphobia in the World Mental Health Surveys. Depress. Anxiety 36, 499–510 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Strohle, A., Gensichen, J. & Domschke, K. The diagnosis and treatment of anxiety disorders. Dtsch. Arztebl. Int. 155, 611–620 (2018).

    PubMed  Google Scholar 

  28. Penninx, B. W., Pine, D. S., Holmes, E. A. & Reif, A. Anxiety disorders. Lancet 397, 914–927 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kessler, R. C., Chiu, W. T., Demler, O., Merikangas, K. R. & Walters, E. E. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 617–627 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lamers, F. et al. Comorbidity patterns of anxiety and depressive disorders in a large cohort study: the Netherlands Study of Depression and Anxiety (NESDA). J. Clin. Psychiatry 72, 341–348 (2011).

    Article  PubMed  Google Scholar 

  31. Goisman, R. M., Goldenberg, I., Vasile, R. G. & Keller, M. B. Comorbidity of anxiety disorders in a multicenter anxiety study. Compr. Psychiatry 36, 303–311 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Bighelli, I. et al. Antidepressants versus placebo for panic disorder in adults. Cochrane Database Syst. Rev. 4, CD010676 (2018).

    PubMed  Google Scholar 

  33. Curtiss, J., Andrews, L., Davis, M., Smits, J. & Hofmann, S. G. A meta-analysis of pharmacotherapy for social anxiety disorder: an examination of efficacy, moderators, and mediators. Expert Opin. Pharmacother. 18, 243–251 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Gomez, A. F., Barthel, A. L. & Hofmann, S. G. Comparing the efficacy of benzodiazepines and serotonergic anti-depressants for adults with generalized anxiety disorder: a meta-analytic review. Expert Opin. Pharmacother. 19, 883–894 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ravindran, L. N. & Stein, M. B. The pharmacologic treatment of anxiety disorders: a review of progress. J. Clin. Psychiatry 71, 839–854 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Bandelow, B. et al. Guidelines for the pharmacological treatment of anxiety disorders, obsessive-compulsive disorder and posttraumatic stress disorder in primary care. Int. J. Psychiatry Clin. Pract. 16, 77–84 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Etkin, A., Prater, K. E., Schatzberg, A. F., Menon, V. & Greicius, M. D. Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Arch. Gen. Psychiatry 66, 1361–1372 (2009).

    Article  PubMed  Google Scholar 

  38. Etkin, A. & Wager, T. D. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry 164, 1476–1488 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fonzo, G. A. et al. Common and disorder-specific neural responses to emotional faces in generalised anxiety, social anxiety and panic disorders. Br. J. Psychiatry 206, 206–215 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kraus, J. et al. Amygdala reactivity and connectivity during social and non-social aversive stimulation in social anxiety disorder. Psychiatry Res. Neuroimaging 280, 56–61 (2018).

    Article  PubMed  Google Scholar 

  41. Roberson-Nay, R., Eaves, L. J., Hettema, J. M., Kendler, K. S. & Silberg, J. L. Childhood separation anxiety disorder and adult onset panic attacks share a common genetic diathesis. Depress. Anxiety 29, 320–327 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hettema, J. M., Prescott, C. A., Myers, J. M., Neale, M. C. & Kendler, K. S. The structure of genetic and environmental risk factors for anxiety disorders in men and women. Arch. Gen. Psychiatry 62, 182–189 (2005).

    Article  PubMed  Google Scholar 

  43. Smoller, J. W., Gardner-Schuster, E. & Covino, J. The genetic basis of panic and phobic anxiety disorders. Am. J. Med. Genet. C 148C, 118–126 (2008).

    Article  Google Scholar 

  44. Tambs, K. et al. Structure of genetic and environmental risk factors for dimensional representations of DSM-IV anxiety disorders. Br. J. Psychiatry 195, 301–307 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chantarujikapong, S. I. et al. A twin study of generalized anxiety disorder symptoms, panic disorder symptoms and post-traumatic stress disorder in men. Psychiatry Res. 103, 133–145 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Lloyd-Jones, L. R., Robinson, M. R., Yang, J. & Visscher, P. M. Transformation of summary statistics from linear mixed model association on all-or-none traits to odds ratio. Genetics 208, 1397–1408 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Thorp, J. G. et al. Symptom-level modelling unravels the shared genetic architecture of anxiety and depression. Nat. Hum. Behav. 5, 1432–1442 (2021).

    Article  PubMed  Google Scholar 

  49. Huo, Y., Li, S., Liu, J., Li, X. & Luo, X. J. Functional genomics reveal gene regulatory mechanisms underlying schizophrenia risk. Nat. Commun. 10, 670 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  50. Li, S. et al. Regulatory mechanisms of major depressive disorder risk variants. Mol. Psychiatry 25, 1926–1945 (2020).

    Article  PubMed  Google Scholar 

  51. Whitington, T. et al. Gene regulatory mechanisms underpinning prostate cancer susceptibility. Nat. Genet. 48, 387–397 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Yifan, L. et al. Cross-ancestry genome-wide association study and systems-level integrative analyses implicate new risk genes and therapeutic targets for depression. Preprint at medRxiv https://doi.org/10.1101/2023.02.24.23286411 (2023).

  53. Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 10, e1004722 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Florio, M. et al. Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex. eLife 7, e32332 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science https://doi.org/10.1126/science.aat8127 (2019).

  57. GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    Article  PubMed Central  Google Scholar 

  58. Wingo, A. P. et al. Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis. Nat. Genet. 53, 143–146 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dall’Aglio, L., Lewis, C. M. & Pain, O. Delineating the genetic component of gene expression in major depression. Biol. Psychiatry 89, 627–636 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liu, J., Li, X. & Luo, X. J. Proteome-wide association study provides insights into the genetic component of protein abundance in psychiatric disorders. Biol. Psychiatry 90, 781–789 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Wingo, T. S. et al. Brain proteome-wide association study implicates novel proteins in depression pathogenesis. Nat. Neurosci. 24, 810–817 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Freshour, S. L. et al. Integration of the Drug–Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res. 49, D1144–D1151 (2020).

    Article  PubMed Central  Google Scholar 

  64. Klein, E. & Uhde, T. W. Controlled study of verapamil for treatment of panic disorder. Am. J. Psychiatry 145, 431–434 (1988).

    Article  CAS  PubMed  Google Scholar 

  65. Mucha, M. et al. Lipocalin-2 controls neuronal excitability and anxiety by regulating dendritic spine formation and maturation. Proc. Natl Acad. Sci. USA 108, 18436–18441 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  66. Moreno-Martinez, S., Tendilla-Beltran, H., Sandoval, V., Flores, G. & Terron, J. A. Chronic restraint stress induces anxiety-like behavior and remodeling of dendritic spines in the central nucleus of the amygdala. Behav. Brain Res. 416, 113523 (2022).

    Article  PubMed  Google Scholar 

  67. Leuner, B. & Shors, T. J. Stress, anxiety, and dendritic spines: what are the connections? Neuroscience 251, 108–119 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Soetanto, A. et al. Association of anxiety and depression with microtubule-associated protein 2- and synaptopodin-immunolabeled dendrite and spine densities in hippocampal CA3 of older humans. Arch. Gen. Psychiatry 67, 448–457 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ishiyama, N. et al. Dynamic and static interactions between p120 catenin and E-cadherin regulate the stability of cell–cell adhesion. Cell 141, 117–128 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Anastasiadis, P. Z. et al. Inhibition of RhoA by p120 catenin. Nat. Cell Biol. 2, 637–644 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Park, J. I. et al. Kaiso/p120-catenin and TCF/beta-catenin complexes coordinately regulate canonical Wnt gene targets. Dev. Cell 8, 843–854 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Gritsenko, P. G. et al. p120-catenin-dependent collective brain infiltration by glioma cell networks. Nat. Cell Biol. 22, 97–107 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Uribe-Arias, A. et al. p120-catenin is necessary for neuroprotection induced by CDK5 silencing in models of Alzheimer’s disease. J. Neurochem. 138, 624–639 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Potvin, O., Hudon, C., Dion, M., Grenier, S. & Preville, M. Anxiety disorders, depressive episodes and cognitive impairment no dementia in community-dwelling older men and women. Int. J. Geriatr. Psychiatry 26, 1080–1088 (2011).

    Article  PubMed  Google Scholar 

  75. Mantella, R. C. et al. Cognitive impairment in late-life generalized anxiety disorder. Am. J. Geriatr. Psychiatry 15, 673–679 (2007).

    Article  PubMed  Google Scholar 

  76. Yang, Y. et al. Cognitive impairment in generalized anxiety disorder revealed by event-related potential N270. Neuropsychiatr. Dis. Treat. 11, 1405–1411 (2015).

    PubMed  PubMed Central  Google Scholar 

  77. Dissanayaka, N. N. W. et al. Anxiety is associated with cognitive impairment in newly-diagnosed Parkinson’s disease. Parkinsonism Relat. Disord. 36, 63–68 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Volel, B. A., Petelin, D. S., Akhapkin, R. V. & Malyutina, A. A. Cognitive impairment in anxiety disorders. Neurol. Neuropsychiatry Psychosom. 10, 78–82 (2018).

    Article  Google Scholar 

  79. Castaneda, A. E., Tuulio-Henriksson, A., Marttunen, M., Suvisaari, J. & Lonnqvist, J. A review on cognitive impairments in depressive and anxiety disorders with a focus on young adults. J. Affect. Disord. 106, 1–27 (2008).

    Article  PubMed  Google Scholar 

  80. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

    Article  PubMed Central  ADS  Google Scholar 

  81. Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343–352 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mullins, N. et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat. Genet. 53, 817–829 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Haley, G. E., Eghlidi, D. H., Kohama, S. G., Urbanski, H. F. & Raber, J. Association of microtubule associated protein-2, synaptophysin, and apolipoprotein E mRNA and protein levels with cognition and anxiety levels in aged female rhesus macaques. Behav. Brain Res. 232, 1–6 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ward, J. et al. Genome-wide analysis in UK Biobank identifies four loci associated with mood instability and genetic correlation with major depressive disorder, anxiety disorder and schizophrenia. Transl. Psychiatry 7, 1264 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Fraporti, T. T. et al. Synergistic effects between ADORA2A and DRD2 genes on anxiety disorders in children with ADHD. Prog. Neuropsychopharmacol. Biol. Psychiatry 93, 214–220 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Joe, K. H. et al. Genetic association of DRD2 polymorphisms with anxiety scores among alcohol-dependent patients. Biochem. Biophys. Res. Commun. 371, 591–595 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Nguyen, D., Alushaj, E., Erb, S. & Ito, R. Dissociative effects of dorsomedial striatum D1 and D2 receptor antagonism in the regulation of anxiety and learned approach-avoidance conflict decision-making. Neuropharmacology 146, 222–230 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Berry, A. S. et al. Dopaminergic mechanisms underlying normal variation in trait anxiety. J. Neurosci. 39, 2735–2744 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Laszlo, K. et al. The role of D2 dopamine receptors in oxytocin induced place preference and anxiolytic effect. Horm. Behav. 124, 104777 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. de Oliveira, A. R. et al. Conditioned fear is modulated by D2 receptor pathway connecting the ventral tegmental area and basolateral amygdala. Neurobiol. Learn. Mem. 95, 37–45 (2011).

    Article  PubMed  Google Scholar 

  92. Peng, B. et al. Corticosterone attenuates reward-seeking behavior and increases anxiety via D2 receptor signaling in ventral tegmental area dopamine neurons. J. Neurosci. 41, 1566–1581 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Comer, J. S., Mojtabai, R. & Olfson, M. National trends in the antipsychotic treatment of psychiatric outpatients with anxiety disorders. Am. J. Psychiatry 168, 1057–1065 (2011).

    Article  PubMed  Google Scholar 

  94. Maher, A. R. et al. Efficacy and comparative effectiveness of atypical antipsychotic medications for off-label uses in adults: a systematic review and meta-analysis. JAMA 306, 1359–1369 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Nelson, J. C. & Papakostas, G. I. Atypical antipsychotic augmentation in major depressive disorder: a meta-analysis of placebo-controlled randomized trials. Am. J. Psychiatry 166, 980–991 (2009).

    Article  PubMed  Google Scholar 

  96. Tomita, H. et al. The protein tyrosine phosphatase receptor delta regulates developmental neurogenesis. Cell Rep. 30, 215–228 e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Ortiz, B. et al. Loss of the tyrosine phosphatase PTPRD leads to aberrant STAT3 activation and promotes gliomagenesis. Proc. Natl Acad. Sci. USA 111, 8149–8154 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  98. Li, F., Zhang, W., Wang, M. & Jia, P. IL1RAP regulated by PRPRD promotes gliomas progression via inducing neuronal synapse development and neuron differentiation in vitro. Pathol. Res. Pract. 216, 153141 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Bienvenu, T. et al. De novo deleterious variants that may alter the dopaminergic reward pathway are associated with anorexia nervosa. Eat. Weight Disord. 25, 1643–1650 (2020).

    Article  PubMed  Google Scholar 

  100. Burton, C. L. et al. Genome-wide association study of pediatric obsessive-compulsive traits: shared genetic risk between traits and disorder. Transl. Psychiatry 11, 91 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu, Q. R. et al. Pooled association genome scanning: validation and use to identify addiction vulnerability loci in two samples. Proc. Natl Acad. Sci. USA 102, 11864–11869 (2005).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  102. Kim, H. N. et al. Genome-wide association study of the five-factor model of personality in young Korean women. J. Hum. Genet. 58, 667–674 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Schormair, B. et al. Identification of novel risk loci for restless legs syndrome in genome-wide association studies in individuals of European ancestry: a meta-analysis. Lancet Neurol. 16, 898–907 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Uhl, G. R. & Martinez, M. J. PTPRD: neurobiology, genetics, and initial pharmacology of a pleiotropic contributor to brain phenotypes. Ann. N. Y. Acad. Sci. 1451, 112–129 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  105. Uhl, G. R. et al. Cocaine reward is reduced by decreased expression of receptor-type protein tyrosine phosphatase D (PTPRD) and by a novel PTPRD antagonist. Proc. Natl Acad. Sci. USA 115, 11597–11602 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  106. Pascual, R., Valencia, M. & Bustamante, C. Antenatal betamethasone produces protracted changes in anxiety-like behaviors and in the expression of microtubule-associated protein 2, brain-derived neurotrophic factor and the tyrosine kinase B receptor in the rat cerebellar cortex. Int. J. Dev. Neurosci. 43, 78–85 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Grima, N. A. et al. Efficacy of melatonin for sleep disturbance following traumatic brain injury: a randomised controlled trial. BMC Med. 16, 8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Davis, M. A., Ireton, R. C. & Reynolds, A. B. A core function for p120-catenin in cadherin turnover. J. Cell Biol. 163, 525–534 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Elia, L. P., Yamamoto, M., Zang, K. & Reichardt, L. F. p120 catenin regulates dendritic spine and synapse development through Rho-family GTPases and cadherins. Neuron 51, 43–56 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Calhoon, G. G. & Tye, K. M. Resolving the neural circuits of anxiety. Nat. Neurosci. 18, 1394–1404 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. McCall, J. G. et al. CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety. Neuron 87, 605–620 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang, X. et al. NG2 glia-derived GABA release tunes inhibitory synapses and contributes to stress-induced anxiety. Nat. Commun. 12, 5740 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  113. Gusev, A. et al. Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat. Genet. 50, 538–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yao, D. W., O’Connor, L. J., Price, A. L. & Gusev, A. Quantifying genetic effects on disease mediated by assayed gene expression levels. Nat. Genet. 52, 626–633 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bandelow, B. & Michaelis, S. Epidemiology of anxiety disorders in the 21st century. Dialogues Clin. Neurosci. 17, 327–335 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Kessler, R. C. et al. The global burden of mental disorders: an update from the WHO World Mental Health (WMH) surveys. Epidemiol. Psichiatr. Soc. 18, 23–33 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kroenke, K., Spitzer, R. L., Williams, J. B. & Lowe, B. The Patient Health Questionnaire somatic, anxiety, and depressive symptom scales: a systematic review. Gen. Hosp. Psychiatry 32, 345–359 (2010).

    Article  PubMed  Google Scholar 

  119. Zhou, W. et al. Efficiently controlling for case–control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ruth, M. P., Mitchell, H. G. & David, P. On combining data from genome-wide association studies to discover disease-associated SNPs. Stat. Sci. 24, 547–560 (2009).

    MathSciNet  Google Scholar 

  121. Evangelou, E. & Ioannidis, J. P. A. Meta-analysis methods for genome-wide association studies and beyond. Nat. Rev. Genet. 14, 379–389 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Begum, F., Ghosh, D., Tseng, G. C. & Feingold, E. Comprehensive literature review and statistical considerations for GWAS meta-analysis. Nucleic Acids Res. 40, 3777–3784 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  125. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Arnold, M., Raffler, J., Pfeufer, A., Suhre, K. & Kastenmuller, G. SNiPA: an interactive, genetic variant-centered annotation browser. Bioinformatics 31, 1334–1336 (2015).

    Article  PubMed  Google Scholar 

  128. Fromer, M. et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat. Neurosci. 19, 1442–1453 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Collado-Torres, L. et al. Regional heterogeneity in gene expression, regulation, and coherence in the frontal cortex and hippocampus across development and schizophrenia. Neuron 103, 203–216 e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wainberg, M. et al. Opportunities and challenges for transcriptome-wide association studies. Nat. Genet. 51, 592–599 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li, X. et al. Transcriptome-wide association study identifies new susceptibility genes and pathways for depression. Transl. Psychiatry 11, 306 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Srivastava, D. P., Woolfrey, K. M. & Penzes, P. Analysis of dendritic spine morphology in cultured CNS neurons. J. Vis. Exp. 13, e2794 (2011).

    Google Scholar 

  135. Li, Y., Li, S., Liu, J., Huo, Y. & Luo, X. J. The schizophrenia susceptibility gene NAGA regulates dendritic spine density: further evidence for the dendritic spine pathology of schizophrenia. Mol. Psychiatry 26, 7102–7104 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Li, Y. et al. Regulatory variant rs2535629 in ITIH3 intron confers schizophrenia risk by regulating CTCF binding and SFMBT1 expression. Adv. Sci. (Weinh.) 9, e2104786 (2022).

    MathSciNet  PubMed  Google Scholar 

  137. Li, S. et al. Regulatory variants at 2q33.1 confer schizophrenia risk by modulating distal gene TYW5 expression. Brain 145, 770–786 (2022).

    Article  PubMed  Google Scholar 

  138. Rodriguez, A., Ehlenberger, D. B., Dickstein, D. L., Hof, P. R. & Wearne, S. L. Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS ONE 3, e1997 (2008).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  139. Wearne, S. L. et al. New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience 136, 661–680 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Dumitriu, D., Rodriguez, A. & Morrison, J. H. High-throughput, detailed, cell-specific neuroanatomy of dendritic spines using microinjection and confocal microscopy. Nat. Protoc. 6, 1391–1411 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zagrebelsky, M. et al. The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons. J. Neurosci. 25, 9989–9999 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Paxinos, G. F. & Franklin, K. J. The Mouse Brain in Stereotaxic Coordinates (Academic Press, 2003).

  144. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods https://doi.org/10.1038/nmeth.2089 (2012).

  145. GraphPad Prism version 8.0.0 for Windows, GraphPad Software, https://www.graphpad.com (2018).

  146. Dang, X. Codes for ‘Genome-wide meta-analysis, functional genomics and integrative analyses implicate new risk genes and therapeutic targets for anxiety disorders’. Zenodo https://doi.org/10.5281/zenodo.8162792 (2023).

Download references

Acknowledgements

This study was equally supported by the National Nature Science Foundation of China (grant nos. U2102205 to X.-J.L., U22A20304 to L.L., 31970561 to X.-J.L., 82171498 to W.L. and U1904130 to W.L.) and the Key Project of Yunnan Fundamental Research Projects (grant no. 202101AS070055 to X.-J.L.). This study was also supported by the Distinguished Young Scientists grant of the Yunnan Province (no. 202001AV070006 to X.-J.L.) and the Major Science and Technology Projects of Henan Province (grant no. 201300310200 to W.L.). We thank Q. Li for her technical assistance. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

X.-J.L. conceived, designed and supervised the whole study. W.L., L.F., T.C. and X.S. conducted the behavioural tests. R.C. performed the dendritic spine analysis and reporter gene assays. X.-J.L. performed the meta-analysis and drug–gene interaction analyses. J.L., X.D. and J.Y. conducted the TWAS, PWAS, colocalization and fine mapping analyses. W.L., L.L., T.L. and Z.Z. contributed to the study design, data interpretation and manuscript writing. X.-J.L. oversaw the project and finalized the manuscript. All authors revised the manuscript critically and approved the final version.

Corresponding author

Correspondence to Xiong-Jian Luo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Zhongshan Cheng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Tables 1–28 and Methods.

Reporting Summary

Source data

Source Data Figs. 3 and 6

Statistical source data for Figs. 3 and 6.

Source Data Fig. 6e

Unprocessed western blots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Chen, R., Feng, L. et al. Genome-wide meta-analysis, functional genomics and integrative analyses implicate new risk genes and therapeutic targets for anxiety disorders. Nat Hum Behav 8, 361–379 (2024). https://doi.org/10.1038/s41562-023-01746-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-023-01746-y

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research