Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Brain structure, phenotypic and genetic correlates of reading performance

Abstract

Reading is an evolutionarily recent development that recruits and tunes brain circuitry connecting primary- and language-processing regions. We investigated whether metrics of the brain’s physical structure correlate with reading performance and whether genetic variants affect this relationship. To this aim, we used the Adolescent Brain Cognitive Development dataset (n = 9,013) of 9–10-year-olds and focused on 150 measures of cortical surface area (CSA) and thickness. Our results reveal that reading performance is associated with nine measures of brain structure including relevant regions of the reading network. Furthermore, we show that this relationship is partially mediated by genetic factors for two of these measures: the CSA of the entire left hemisphere and, specifically, of the left superior temporal gyrus CSA. These effects emphasize the complex and subtle interplay between genes, brain and reading, which is a partly heritable polygenic skill that relies on a distributed network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of study goals and analytical approaches.
Fig. 2: Effect of left-hemisphere cortical measures on reading performance (n = 9,013).
Fig. 3: Decile plots for PGS of cognitive performance on left-hemisphere CSA measures (n = 4,080).
Fig. 4: Mediation of the CSA on the association between the PGSCP and reading.

Similar content being viewed by others

Data availability

ABCD data are publicly available through the NIMH Data Archive (https://data-archive.nimh.nih.gov/abcd). The current study analysed the full baseline sample (n 11,878) from the ABCD data release 3.0 RDS (https://doi.org/10.15154/1520591) and the Genotyping Data from the ABCD Curated Annual Release 3.0 (NDA Study 901; https://doi.org/10.15154/1519007). All variables included in the current study are listed and described in Supplementary Table 1. GWAS summary statistics used in this study are available from the NHGRI-EBI GWAS Catalogue https://www.ebi.ac.uk/gwas/downloads/summary-statistics and the Oxford Brain Imaging Genetics Server, BIG40 (https://open.win.ox.ac.uk/ukbiobank/big40/). Supplementary Table 7 contains the references and field IDs for all analysed traits.

Code availability

The custom code associated with this study is publicly available at https://github.com/amaiacc/MS-brain-reading-genetics/.

References

  1. Sandak, R., Mencl, W. E., Frost, S. J. & Pugh, K. R. The neurobiological basis of skilled and impaired reading: recent findings and new directions. Sci. Stud. Read. 8, 273–292 (2004).

    Article  Google Scholar 

  2. Dehaene, S. & Cohen, L. Cultural recycling of cortical maps. Neuron 56, 384–398 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Friederici, A. D. The cortical language circuit: from auditory perception to sentence comprehension. Trends Cogn. Sci. 16, 262–268 (2012).

    Article  PubMed  Google Scholar 

  4. Lau, E. F., Phillips, C. & Poeppel, D. A cortical network for semantics: (de)constructing the N400. Nat. Rev. Neurosci. 9, 920–N933 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Martin, A., Schurz, M., Kronbichler, M. & Richlan, F. Reading in the brain of children and adults: a meta-analysis of 40 functional magnetic resonance imaging studies. Hum. Brain Mapp. 36, 1963–1981 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pugh, K. R. et al. Neurobiological studies of reading and reading disability. J. Commun. Disord. 34, 479–492 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Carreiras, M. et al. An anatomical signature for literacy. Nature 461, 983–986 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Dehaene, S., Cohen, L., Morais, J. & Kolinsky, R. Illiterate to literate: behavioural and cerebral changes induced by reading acquisition. Nat. Rev. Neurosci. 16, 234–244 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Jednoróg, K. et al. The influence of socioeconomic status on children’s brain structure. PLoS ONE 7, e42486 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Romeo, R. R., Uchida, L. & Christodoulou, J. A. Socioeconomic status and reading outcomes: neurobiological and behavioral correlates. New Dir. Child Adolesc. Dev. https://doi.org/10.1002/cad.20475 (2022).

  11. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 5th edn (APA Publishing, 2013).

  12. World Health Organization. International Statistical Classification of Diseases and Related Health Problems, 10th Revision 5th edn (WHO, 2016).

  13. Goswami, U. Phonology, reading development, and dyslexia: a cross-linguistic perspective. Ann. Dyslexia 52, 139–163 (2002).

    Article  Google Scholar 

  14. Ramus, F. Developmental dyslexia: specific phonological deficit or general sensorimotor dysfunction? Curr. Opin. Neurobiol. 13, 212–218 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Ramus, F., Altarelli, I., Jednoróg, K., Zhao, J. & Covella, L. S. Neuroanatomy of developmental dyslexia: pitfalls and promise. Neurosci. Biobehav. Rev. 84, 434–452 (2018).

    Article  PubMed  Google Scholar 

  16. Richlan, F. Developmental dyslexia: dysfunction of a left hemisphere reading network. Front. Hum. Neurosci. 6, 120 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Andreola, C. et al. The heritability of reading and reading-related neurocognitive components: a multi-level meta-analysis. Neurosci. Biobehav. Rev. 121, 175–200 (2021).

    Article  PubMed  Google Scholar 

  18. Verhoef, E., Shapland, C. Y., Fisher, S. E., Dale, P. S. & Pourcain, B. S., The developmental origins of genetic factors influencing language and literacy: associations with early-childhood vocabulary. J. Child Psychol. Psychiatry 62, 728–738 (2020).

  19. Eising, E. et al. Genome-wide association analyses of individual differences in quantitatively assessed reading- and language-related skills in up to 34,000 people. Proc. Natl Acad. Sci. USA 119, e2202764119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fisher, S. E. & DeFries, J. C. Developmental dyslexia: genetic dissection of a complex cognitive trait. Nat. Rev. Neurosci. 3, 767–780 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Doust, C. et al. Discovery of 42 genome-wide significant loci associated with dyslexia. Nat. Genet. 54, 1621–1629 (2022); https://doi.org/10.1038/s41588-022-01192-y

  22. Gialluisi, A. et al. Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia. Mol. Psychiatry 26, 3004–3017 (2020).

  23. Grasby, K. L. et al. The genetic architecture of the human cerebral cortex. Science 367, eaay6690 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Elliott, L. T. et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 562, 210–216 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smith, S. M. et al. An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat. Neurosci. 24, 737–745 (2021).

  26. Landi, N. & Perdue, M. V. Neuroimaging genetics studies of specific reading disability and developmental language disorder: a review. Lang. Linguist. Compass 13, e12349 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Roeske, D. et al. First genome-wide association scan on neurophysiological endophenotypes points to trans-regulation effects on SLC2A3 in dyslexic children. Mol. Psychiatry 16, 97–107 (2009).

    Article  PubMed  Google Scholar 

  28. Scarborough, H. S. & Brady, S. A. Toward a common terminology for talking about speech and reading: a glossary of the phon words and some related terms. J. Lit. Res. 34, 299–336 (2002).

    Article  Google Scholar 

  29. Taylor, J. S. H., Rastle, K. & Davis, M. H. Can cognitive models explain brain activation during word and pseudoword reading? A meta-analysis of 36 neuroimaging studies. Psychol. Bull. 139, 766–791 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Jobard, G., Crivello, F. & Tzourio-Mazoyer, N. Evaluation of the dual route theory of reading: a metanalysis of 35 neuroimaging studies. NeuroImage 20, 693–712 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Dick, A. S. et al. Meaningful associations in the Adolescent Brain Cognitive Development study. NeuroImage 239, 118262 (2021).

    Article  PubMed  Google Scholar 

  32. Vigneau, M. et al. Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. NeuroImage 30, 1414–1432 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Rueckl, J. G. et al. Universal brain signature of proficient reading: evidence from four contrasting languages. Proc. Natl Acad. Sci. USA 112, 15510–15515 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Destrieux, C., Fischl, B., Dale, A. M. & Halgren, E. A sulcal depth-based anatomical parcellation of the cerebral cortex. NeuroImage 47, S151 (2009).

    Article  Google Scholar 

  35. Hyatt, C. S. et al. The quandary of covarying: a brief review and empirical examination of covariate use in structural neuroimaging studies on psychological variables. NeuroImage 205, 116225 (2020).

    Article  PubMed  Google Scholar 

  36. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Howe, L. J. et al. Within-sibship genome-wide association analyses decrease bias in estimates of direct genetic effects. Nat. Genet. 54, 581–592 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maier, R. M., Visscher, P. M., Robinson, M. R. & Wray, N. R. Embracing polygenicity: a review of methods and tools for psychiatric genetics research. Psychol. Med. 48, 1055–1067 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Vuoksimaa, E. et al. Is bigger always better? The importance of cortical configuration with respect to cognitive ability. NeuroImage 129, 356–366 (2016).

    Article  PubMed  Google Scholar 

  42. Dynak, A. et al. Separating the influences of late talking and dyslexia on brain structure. J. Abnorm. Psychol. 130, 286–296 (2021).

    Article  PubMed  Google Scholar 

  43. Palmer, C. E. et al. Distinct regionalization patterns of cortical morphology are associated with cognitive performance across different domains. Cereb. Cortex 31, 3856–3871 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hickok, G. & Poeppel, D. The cortical organization of speech processing. Nat. Rev. Neurosci. 8, 393–402 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Atteveldt, N., Formisano, E., Goebel, R. & Blomert, L. Integration of letters and speech sounds in the human brain. Neuron 43, 271–282 (2004).

    Article  PubMed  Google Scholar 

  46. Boets, B. et al. Intact but less accessible phonetic representations in adults with dyslexia. Science 342, 1251–1254 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Essen, D. C. V. & Dierker, D. L. Surface-based and probabilistic atlases of primate cerebral cortex. Neuron 56, 209–225 (2007).

    Article  PubMed  Google Scholar 

  48. Płoński, P. et al. Multi-parameter machine learning approach to the neuroanatomical basis of developmental dyslexia. Hum. Brain Mapp. 38, 900–908 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Perdue, M. V., Mednick, J., Pugh, K. R. & Landi, N. Gray matter structure is associated with reading skill in typically developing young readers. Cereb. Cortex 30, 5449–5459 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Richlan, F., Kronbichler, M. & Wimmer, H. Structural abnormalities in the dyslexic brain: a meta-analysis of voxel-based morphometry studies. Hum. Brain Mapp. 34, 3055–3065 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Altarelli, I. et al. Planum temporale asymmetry in developmental dyslexia: revisiting an old question. Hum. Brain Mapp. 35, 5717–5735 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ben-Shachar, M., Dougherty, R. F., Deutsch, G. K. & Wandell, B. A. Differential sensitivity to words and shapes in ventral occipito-temporal cortex. Cereb. Cortex 17, 1604–1611 (2007).

    Article  PubMed  Google Scholar 

  53. Cohen, L. et al. The visual word form area. Brain 123, 291–307 (2000).

    Article  PubMed  Google Scholar 

  54. Beelen, C., Vanderauwera, J., Wouters, J., Vandermosten, M. & Ghesquière, P. Atypical gray matter in children with dyslexia before the onset of reading instruction. Cortex 121, 399–413 (2019).

    Article  PubMed  Google Scholar 

  55. Carreiras, M., Quiñones, I., Hernández-Cabrera, J. A. & Duñabeitia, J. A. Orthographic coding: brain activation for letters, symbols, and digits. Cereb. Cortex 25, 4748–4760 (2015).

    Article  PubMed  Google Scholar 

  56. Feng, X. et al. A universal reading network and its modulation by writing system and reading ability in French and Chinese children. eLife 9, e54591 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lyall, A. E. et al. Dynamic development of regional cortical thickness and surface area in early childhood. Cereb. Cortex 25, 2204–2212 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Panizzon, M. S. et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb. Cortex 19, 2728–2735 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rakic, P. Specification of cerebral cortical areas. Science 241, 170–176 (1988).

    Article  CAS  PubMed  Google Scholar 

  60. Meer, D. et al. Quantifying the polygenic architecture of the human cerebral cortex: extensive genetic overlap between cortical thickness and surface area. Cereb. Cortex 30, 5597–5603 (2020).

  61. Eyler, L. T. et al. A comparison of heritability maps of cortical surface area and thickness and the influence of adjustment for whole brain measures: a magnetic resonance imaging twin study. Twin Res. Hum. Genet. 15, 304–314 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hoogman, M. et al. Brain imaging of the cortex in ADHD: a coordinated analysis of large-scale clinical and population-based samples. Am. J. Psychiatry 176, 531–542 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Owens, M. M. et al. Multimethod investigation of the neurobiological basis of ADHD symptomatology in children aged 9-10: baseline data from the ABCD study. Transl. Psychiatry 11, 64 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Alfaro-Almagro, F. et al. Confound modelling in UK Biobank brain imaging. NeuroImage 224, 117002 (2021).

    Article  PubMed  Google Scholar 

  65. Batouli, S. A. H., Trollor, J. N., Wen, W. & Sachdev, P. S. The heritability of volumes of brain structures and its relationship to age: a review of twin and family studies. Ageing Res. Rev. 13, 1–9 (2014).

    Article  PubMed  Google Scholar 

  66. Jansen, A. G., Mous, S. E., White, T., Posthuma, D. & Polderman, T. J. C. What twin studies tell us about the heritability of brain development, morphology, and function: a review. Neuropsychol. Rev. 25, 27–46 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Teeuw, J. et al. Genetic influences on the development of cerebral cortical thickness during childhood and adolescence in a Dutch longitudinal twin sample: the brainscale study. Cereb. Cortex 29, 978–993 (2018).

    Article  Google Scholar 

  68. Visscher, P. M. et al. Statistical power to detect genetic (co)variance of complex traits using SNP data in unrelated samples. PLoS Genet. 10, e1004269 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Frei, O. et al. Bivariate causal mixture model quantifies polygenic overlap between complex traits beyond genetic correlation. Nat. Commun. 10, 2417 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mitchell, B. L. et al. Educational attainment polygenic scores are associated with cortical total surface area and regions important for language and memory. NeuroImage 15, 116691 (2020).

    Article  Google Scholar 

  71. Lett, T. A. et al. Cortical surfaces mediate the relationship between polygenic scores for intelligence and general intelligence. Cereb. Cortex 30, 2708–2719 (2019).

    Article  PubMed Central  Google Scholar 

  72. Vuoksimaa, E. et al. The genetic association between neocortical volume and general cognitive ability is driven by global surface area rather than thickness. Cereb. Cortex 25, 2127–2137 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Smith, S. et al. Structural variability in the human brain reflects fine-grained functional architecture at the population level. J. Neurosci. 39, 6136–6149 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Casey, B. J. et al. The Adolescent brain Cognitive Development (ABCD) study: imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43–54 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Littlejohns, T. J. et al. The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions. Nat. Commun. 11, 2624 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jednoróg, K. et al. How reliable are gray matter disruptions in specific reading disability across multiple countries and languages? insights from a large-scale voxel-based morphometry study. Hum. Brain Mapp. 36, 1741–1754 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Loughnan, R. J. et al. Gene-experience correlation during cognitive development: evidence from the Adolescent Brain Cognitive Development (ABCD) Study. https://doi.org/10.1101/637512 (2019).

  79. Walhovd, K. B. et al. Neurodevelopmental origins of lifespan changes in brain and cognition. Proc. Natl Acad. Sci. USA 113, 9357–9362 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jernigan, T. L. & Brown, S. A. Introduction. Dev. Cogn. Neurosci. 32, 1–3 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Auchter, A. M. et al. A description of the ABCD organizational structure and communication framework. Dev. Cogn. Neurosci. 32, 8–15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Garavan, H. et al. Recruiting the ABCD sample: design considerations and procedures. Dev. Cogn. Neurosci. 32, 16–22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Compton, W. M., Dowling, G. J. & Garavan, H. Ensuring the best use of data. JAMA Pediatr. 173, 809 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Luciana, M. et al. Adolescent neurocognitive development and impacts of substance use: overview of the Adolescent Brain Cognitive Development (ABCD) baseline neurocognition battery. Dev. Cogn. Neurosci. 32, 67–79 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hagler, D. J. et al. Image processing and analysis methods for the Adolescent Brain Cognitive Development study. NeuroImage 202, 116091 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  87. Revelle, W. R. Psych: Procedures for psychological, psychometric, and personality research. Software, R package version 2.2.9 (2022); https://CRAN.R-project.org/package=psych

  88. Mowinckel, A. M. & Vidal-Piñeiro, D. Visualization of brain statistics with R Packages ggseg and ggseg3d. Adv. Methods Pract. Psychol. Sci. 3, 466–483 (2020).

    Article  Google Scholar 

  89. Mowinckel, A. M., & Vidal-Piñeiro, D. ggsegDesterieux: Desterieux datasets for the ggseg-plotting tool. R package version 1.0.1.002 (2021); https://github.com/LCBC-UiO/ggsegDesterieux

  90. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Coleman, J. R. I. et al. Quality control, imputation and analysis of genome-wide genotyping data from the Illumina HumanCoreExome microarray. Brief. Funct. Genomics 15, 298–304 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  PubMed  Google Scholar 

  94. Choi, S. W. & OReilly, P. F. PRSice-2: polygenic risk score software for biobank-scale data. GigaScience 8, giz082 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Tingley, D., Yamamoto, T., Hirose, K., Keele, L. & Imai, K., mediation: R package for causal mediation analysis. J. Stat. Softw. 59, 1–38 (2014).

  96. Imai, K., Keele, L. & Tingley, D. A general approach to causal mediation analysis. Psych. Meth. 15, 309–334 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Barry and C. Handley for helping with manuscript proofreading. This research is supported by the Basque Government through the BERC 2022–2025 programme and by the Spanish State Research Agency through BCBL Severo Ochoa excellence accreditation no. CEX2020-001010-S. A.C.-C. received funding from the Spanish Ministry of Science and Innovation and the Agencia Estatal de Investigación through Ayudas Juan de la Cierva-Incorporación (ref. no. IJC2018-036023-I), the Programa Fellows Gipuzkoa de atracción y retención de talento from the Diputación Foral de Gipuzkoa. P.M.P-A. is supported by grants from the Spanish Ministry of Science and Innovation (grant no. PID2021-123574NB-I00), from the Basque Government (grant no. PIBA-2021-1-0003) and from the Red guipuzcoana de Ciencia, Tecnología e Innovación of the Diputación Foral de Gipuzkoa (grant no. FA/OF 422/2022). M.C. is supported by the Spanish Ministry of Science and Innovation grant (no. PID2021-122918OB-I00) and ‘La Caixa’ Foundation (grant no. ID 100010434), under the agreement no. HR18-00178-DYSTHAL. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. Data used in the preparation of this article were obtained from the ABCD Study (https://abcdstudy.org/) and are held in the National Institute of Mental Health (NIMH) Data Archive. This is a multisite, longitudinal study designed to recruit more than 10,000 children aged 9–10 and follow them over 10 years into early adulthood. The ABCD Study is supported by the NIH and additional federal partners under award numbers U01DA041022, U01DA041028, U01DA041048, U01DA041089, U01DA041106, U01DA041117, U01DA041120, U01DA041134, U01DA041148, U01DA041156, U01DA041174, U24DA041123 and U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners/. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/principal-investigators/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators. The ABCD data repository grows and changes over time. The ABCD data used in this report came from https://doi.org/10.15154/1520591 and https://doi.org/10.15154/1519007 (genotyping data).

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and designed the study. A.C.-C. analysed the data, made figures and wrote the first draft of the paper. All authors discussed the results and contributed towards the writing of the final version of the manuscript.

Corresponding authors

Correspondence to Amaia Carrión-Castillo or Manuel Carreiras.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Dan Belsky and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figs. 1–15.

Reporting Summary

Peer Review File

Supplementary Table

Supplementary tables 1–10.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrión-Castillo, A., Paz-Alonso, P.M. & Carreiras, M. Brain structure, phenotypic and genetic correlates of reading performance. Nat Hum Behav 7, 1120–1134 (2023). https://doi.org/10.1038/s41562-023-01583-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-023-01583-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing