Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Uncertainty aversion predicts the neural expansion of semantic representations

Abstract

Correctly identifying the meaning of a stimulus requires activating the appropriate semantic representation among many alternatives. One way to reduce this uncertainty is to differentiate semantic representations from each other, thereby expanding the semantic space. Here, in four experiments, we test this semantic-expansion hypothesis, finding that uncertainty-averse individuals exhibit increasingly differentiated and separated semantic representations. This effect is mirrored at the neural level, where uncertainty aversion predicts greater distances between activity patterns in the left inferior frontal gyrus when reading words, and enhanced sensitivity to the semantic ambiguity of these words in the ventromedial prefrontal cortex. Two direct tests of the behavioural consequences of semantic expansion further reveal that uncertainty-averse individuals exhibit reduced semantic interference and poorer generalization. Together, these findings show that the internal structure of our semantic representations acts as an organizing principle to make the world more identifiable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dissimilar semantic representations and neural activity patterns are more identifiable.
Fig. 2: The semantic-expansion at the psychological and neural level.
Fig. 3: People averse to uncertainty encode semantic ambiguity in the VMPFC.
Fig. 4: Semantic expansion improves discrimination but reduces generalization.

Similar content being viewed by others

Data availability

De-identified data for all experiments are publicly available at https://osf.io/gmqh4. The data used for analyses to estimate semantic similarity and ambiguity are available at https://nlp.stanford.edu/projects/glove/ and https://elexicon.wustl.edu/.

Code availability

Codes for the analyses of the paper are publicly available at https://osf.io/gmqh4.

References

  1. Kahneman, D. & Tversky, A. Variants of uncertainty. Cognition 11, 143–157 (1982).

    Article  CAS  PubMed  Google Scholar 

  2. Bach, D. R. & Dolan, R. J. Knowing how much you don’t know: a neural organization of uncertainty estimates. Nat. Rev. Neurosci. 13, 572–586 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Vives, M. L. & FeldmanHall, O. Tolerance to ambiguous uncertainty predicts prosocial behavior. Nat. Commun. 9, 2156 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kahneman, D. & Tversky, A. Prospect theory: an analysis of decision under risk. Econometrica 47, 263 (1979).

    Article  Google Scholar 

  5. FeldmanHall, O. & Shenhav, A. Resolving uncertainty in a social world. Nat. Hum. Behav. 3, 426–435 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Huettel, S. A., Stowe, C. J., Gordon, E. M., Warner, B. T. & Platt, M. L. Neural signatures of economic preferences for risk and ambiguity. Neuron 49, 765–775 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Freeston, M. H., Rhéaume, J., Letarte, H., Dugas, M. J. & Ladouceur, R. Why do people worry?. Pers. Individ. Differ. https://doi.org/10.1016/0191-8869(94)90048-5 (1994).

    Article  Google Scholar 

  8. Hirsh, J. B., Mar, R. A. & Peterson, J. B. Psychological entropy: a framework for understanding uncertainty-related anxiety. Psychol. Rev. 119, 304–320 (2012).

    Article  PubMed  Google Scholar 

  9. Buhr, K. & Dugas, M. J. The intolerance of uncertainty scale: psychometric properties of the English version. Behav. Res. Ther. 40, 931–945 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Ladouceur, R., Talbot, F. & Dugas, M. J. Behavioral expressions of intolerance of uncertainty in worry: experimental findings. Behav. Modif. 21, 355–371 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Dugas, M. J. et al. Intolerance of uncertainty and information processing: evidence of biased recall and interpretations. Cogn. Ther. Res. 29, 57–70 (2005).

    Article  Google Scholar 

  12. Luhmann, C. C., Ishida, K. & Hajcak, G. Intolerance of uncertainty and decisions about delayed, probabilistic rewards. Behav. Ther. 42, 378–386 (2011).

    Article  PubMed  Google Scholar 

  13. Tanovic, E., Gee, D. G. & Joormann, J. Intolerance of uncertainty: neural and psychophysiological correlates of the perception of uncertainty as threatening. Clin. Psychol. Rev. 60, 87–99 (2018).

    Article  PubMed  Google Scholar 

  14. Gilboa, I. & Schmeidler, D. Maxmin expected utility with non-unique prior. J. Math. Econ. 18, 141–153 (1989).

    Article  Google Scholar 

  15. Van Baar, J. M., Halpern, D. J. & FeldmanHall, O. Intolerance of uncertainty modulates brain-to-brain synchrony during politically polarized perception. Proc. Natl Acad. Sci. USA 118, e2022491118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Griffiths, T. L., Steyvers, M. & Tenenbaum, J. B. Topics in semantic representation. Psychol. Rev. 114, 211–244 (2007).

    Article  PubMed  Google Scholar 

  17. Henderson, J. M. & Hayes, T. R. Meaning-based guidance of attention in scenes as revealed by meaning maps. Nat. Hum. Behav. 1, 743–747 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chadwick, M. J. et al. Semantic representations in the temporal pole predict false memories. Proc. Natl Acad. Sci. USA 113, 10180–10185 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McEvoy, C. L., Nelson, D. L. & Komatsu, T. What is the connection between true and false memories? The differential roles of interitem associations in recall and recognition. J. Exp. Psychol. Learn. Mem. Cogn. 25, 1177–1194 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Badre, D., Bhandari, A., Keglovits, H. & Kikumoto, A. The dimensionality of neural representations for control. Curr. Opin. Behav. Sci. 38, 20–28 (2021).

    Article  PubMed  Google Scholar 

  21. Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Diedrichsen, J., Wiestler, T. & Ejaz, N. A multivariate method to determine the dimensionality of neural representation from population activity. Neuroimage 76, 225–235 (2013).

    Article  PubMed  Google Scholar 

  23. Fusi, S., Miller, E. K. & Rigotti, M. Why neurons mix: high dimensionality for higher cognition. Curr. Opin. Neurobiol. 37, 66–74 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Franconeri, S. L., Alvarez, G. A. & Cavanagh, P. Flexible cognitive resources: competitive content maps for attention and memory. Trends Cogn. Sci. 17, 134–141 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Landauer, T. K. & Dumais, S. T. A solution to Plato’s problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol. Rev. 104, 211–240 (1997).

    Article  Google Scholar 

  26. Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–27 (1964).

    Article  Google Scholar 

  27. Friederici, A. D. The brain basis of language processing: from structure to function. Physiol. Rev. 91, 1357–1392 (2011).

    Article  PubMed  Google Scholar 

  28. Poldrack, R. A. et al. Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. Neuroimage 10, 15–35 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Frankland, S. M. & Greene, J. D. Concepts and compositionality: in search of the brain’s language of thought. Annu. Rev. Psychol. 71, 273–303 (2020).

    Article  PubMed  Google Scholar 

  30. Fedorenko, E., Blank, I. A., Siegelman, M. & Mineroff, Z. Lack of selectivity for syntax relative to word meanings throughout the language network. Cognition 203, 104348 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fairhall, S. L. & Caramazza, A. Brain regions that represent amodal conceptual knowledge. J. Neurosci. 33, 10552–10558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hoffman, P., Pobric, G., Drakesmith, M. & Lambon Ralph, M. A. Posterior middle temporal gyrus is involved in verbal and non-verbal semantic cognition: evidence from rTMS. Aphasiology 26, 1119–1130 (2012).

    Article  Google Scholar 

  33. Knecht, S. et al. Language lateralization in healthy right-handers. Brain 123, 74–81 (2000).

    Article  PubMed  Google Scholar 

  34. Bechara, A., Damasio, H. & Damasio, A. R. Emotion, decision making and the orbitofrontal cortex. Cereb. Cortex 10, 295–307 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Critchley, H. D., Mathias, C. J. & Dolan, R. J. Neural activity in the human brain relating to uncertainty and arousal during anticipation. Neuron 29, 537–545 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. FeldmanHall, O. et al. Stimulus generalization as a mechanism for learning to trust. Proc. Natl Acad. Sci. USA 115, E1690–E1697 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hsu, M., Bhatt, M., Adolphs, R., Tranel, D. & Camerer, C. F. Neural systems responding to degrees of uncertainty in human decision-making. Science 310, 1680–1683 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Levy, I., Snell, J., Nelson, A. J., Rustichini, A. & Glimcher, P. W. Neural representation of subjective value under risk and ambiguity. J. Neurophysiol. 103, 1036–1047 (2010).

    Article  PubMed  Google Scholar 

  39. Walther, A. et al. Reliability of dissimilarity measures for multi-voxel pattern analysis. Neuroimage 137, 188–200 (2016).

    Article  PubMed  Google Scholar 

  40. Fedorenko, E., Duncan, J. & Kanwisher, N. Broad domain generality in focal regions of frontal and parietal cortex. Proc. Natl Acad. Sci. USA 110, 16616–16621 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hoffman, P., Lambon Ralph, M. A. & Rogers, T. T. Semantic diversity: a measure of semantic ambiguity based on variability in the contextual usage of words. Behav. Res. Methods 45, 718–730 (2013).

    Article  PubMed  Google Scholar 

  42. FeldmanHall, O. et al. Stimulus generalization as a mechanism for learning to trust. Proc. Natl Acad. Sci. USA 115, 1690 (2018).

    Article  Google Scholar 

  43. Shepard, R. N. Toward a universal law of generalization for psychological science. Science 237, 1317–1323 (1987).

    Article  CAS  PubMed  Google Scholar 

  44. Rodd, J. M., Gaskell, M. G. & Marslen-Wilson, W. D. Modelling the effects of semantic ambiguity in word recognition. Cogn.Sci. https://doi.org/10.1016/j.cogsci.2003.08.002 (2004).

    Article  Google Scholar 

  45. Roelofs, A. A spreading-activation theory of lemma retrieval in speaking. Cognition 42, 107–142 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Schnur, T. T. et al. Localizing interference during naming: convergent neuroimaging and neuropsychological evidence for the function of Broca’s area. Proc. Natl Acad. Sci. USA 106, 322–327 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Vuong, L. C. & Martin, R. C. LIFG-based attentional control and the resolution of lexical ambiguities in sentence context. Brain Lang. 116, 22–32 (2011).

    Article  PubMed  Google Scholar 

  48. Riès, S. K., Karzmark, C. R., Navarrete, E., Knight, R. T. & Dronkers, N. F. Specifying the role of the left prefrontal cortex in word selection. Brain Lang. 149, 135–147 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pino, D., Mädebach, A., Jescheniak, J. D., Regenbrecht, F. & Obrig, H. BONEs not CATs attract DOGs: semantic context effects for picture naming in the lesioned language network. Neuroimage 246, 118767 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Volz, K. G., Schubotz, R. I. & Von Cramon, D. Y. Predicting events of varying probability: uncertainty investigated by fMRI. Neuroimage 19, 271–280 (2003).

    Article  PubMed  Google Scholar 

  51. Rushworth, M. F. S. & Behrens, T. E. J. Choice, uncertainty and value in prefrontal and cingulate cortex. Nat. Neurosci. 11, 389–397 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Philiastides, M. G., Ratcliff, R. & Sajda, P. Neural representation of task difficulty and decision making during perceptual categorization: a timing diagram. J. Neurosci. 26, 8965–8975 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Grindrod, C. M., Bilenko, N. Y., Myers, E. B. & Blumstein, S. E. The role of the left inferior frontal gyrus in implicit semantic competition and selection: an event-related fMRI study. Brain Res. 1229, 167–178 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fedorenko, E. & Blank, I. A. Broca’s area is not a natural kind. Trends Cogn. Sci. 24, 270–284 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Badre, D. & Wagner, A. D. Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia 45, 2883–2901 (2007).

    Article  PubMed  Google Scholar 

  56. Hoffman, P., McClelland, J. L. & Lambon Ralph, M. A. Concepts, control, and context: a connectionist account of normal and disordered semantic cognition. Psychol. Rev. 125, 293–328 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sims, C. R. Efficient coding explains the universal law of generalization in human perception. Science 360, 652–656 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Shepard, R. N. The analysis of proximities: multidimensional scaling with an unknown distance function. I. Psychometrika 27, 125–140 (1962).

    Article  Google Scholar 

  59. Bangert, M. et al. Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction. Neuroimage 30, 917–926 (2006).

    Article  PubMed  Google Scholar 

  60. Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Gorgolewski, K. et al. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python. Front. Neuroinform. 5, 13 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Avants, B. B., Epstein, C. L., Grossman, M. & Gee, J. C. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation–maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Fonov, V., Evans, A., McKinstry, R., Almli, C. & Collins, D. Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. Neuroimage 47, S102 (2009).

    Article  Google Scholar 

  66. Jenkinson, M. & Smith, S. A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5, 143–156 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage 48, 63–72 (2009).

    Article  PubMed  Google Scholar 

  68. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002).

    Article  PubMed  Google Scholar 

  69. Cox, R. W. & Hyde, J. S. Software tools for analysis and visualization of fMRI data. NMR Biomed. 10, 171–178 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341 (2014).

    Article  PubMed  Google Scholar 

  71. Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37, 90–101 (2007).

    Article  PubMed  Google Scholar 

  72. Muschelli, J. et al. Reduction of motion-related artifacts in resting state fMRI using aCompCor. Neuroimage 96, 22–35 (2014).

    Article  PubMed  Google Scholar 

  73. Satterthwaite, T. D. et al. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64, 240–256 (2013).

    Article  PubMed  Google Scholar 

  74. Lanczos, C. Evaluation of noisy data. J. Soc. Ind. Appl. Math. B 1, 76–85 (1964).

    Article  Google Scholar 

  75. Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Nili, H. et al. A toolbox for representational similarity analysis. PLoS Comput. Biol. 10, e1003553 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Mem. Lang. 68, 255–278 (2013).

    Article  Google Scholar 

  78. Balota, D. A. et al. The English lexicon project. Behav. Res. Methods 39, 445–459 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by a Carney Innovation Grant from the Robert J. and Nancy D. Carney Institute for Brain Science and NIH Centers of Biomedical Research Excellence Grant, no. P20GM103645 awarded to O.F.H. A.B. was supported by grant number R01MH125497 from the National Institute of Mental Health and grant number R21NS108380 from the National Institute of Neurological Disorders and Stroke of the National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.-L.V., D.d.B., O.F.H. & A.B. contributed to designing the research and writing the paper. J.M.v.B performed data collection. M.-L.V. and D.d.B. performed the data analyses.

Corresponding authors

Correspondence to Marc-Lluís Vives, Oriel FeldmanHall or Apoorva Bhandari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Rebecca Jackson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Tables 1–4.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vives, ML., de Bruin, D., van Baar, J.M. et al. Uncertainty aversion predicts the neural expansion of semantic representations. Nat Hum Behav 7, 765–775 (2023). https://doi.org/10.1038/s41562-023-01561-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-023-01561-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing