Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rare CNVs and phenome-wide profiling highlight brain structural divergence and phenotypical convergence

Abstract

Copy number variations (CNVs) are rare genomic deletions and duplications that can affect brain and behaviour. Previous reports of CNV pleiotropy imply that they converge on shared mechanisms at some level of pathway cascades, from genes to large-scale neural circuits to the phenome. However, existing studies have primarily examined single CNV loci in small clinical cohorts. It remains unknown, for example, how distinct CNVs escalate vulnerability for the same developmental and psychiatric disorders. Here we quantitatively dissect the associations between brain organization and behavioural differentiation across 8 key CNVs. In 534 CNV carriers, we explored CNV-specific brain morphology patterns. CNVs were characteristic of disparate morphological changes involving multiple large-scale networks. We extensively annotated these CNV-associated patterns with ~1,000 lifestyle indicators through the UK Biobank resource. The resulting phenotypic profiles largely overlap and have body-wide implications, including the cardiovascular, endocrine, skeletal and nervous systems. Our population-level investigation established brain structural divergences and phenotypical convergences of CNVs, with direct relevance to major brain disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Eight CNVs lead to largely distinct spatial patterns of abnormalities in brain morphology.
Fig. 2: Pattern-learning models extract distinct intermediate brain phenotypes from CNV status.
Fig. 3: Intermediate brain phenotypes track structural changes with distinct impacts on large-scale networks.
Fig. 4: Using intermediate CNV phenotypes as a basis for phenome-wide association analysis.
Fig. 5: Eight different CNVs converge on similar phenome-wide association profiles.
Fig. 6: Detailing aspects convergence in phenome-wide portfolios across different CNVs.

Similar content being viewed by others

Data availability

The majority of 16p11.2 data are publicly available (https://www.sfari.org/). For the 22q11.2 sample, raw data are available upon request from the PI (C.E.B., cbearden@mednet.ucla.edu). All derived measures used in this study are available upon request (S.J., sebastien.jacquemont@umontreal.ca). The rest of the CNV carriers’ data cannot be shared as participants did not provide consent. All data from UK Biobank are available to other investigators online (ukbiobank.ac.uk). The Schaefer-Yeo atlas is accessible online (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal). Source data are provided with this paper.

Code availability

The processing scripts and custom analysis software used in this work are available in a publicly accessible GitHub repository along with examples of key visualizations in the paper: https://github.com/dblabs-mcgill-mila/CNV-convergence.

References

  1. Freeman, J. L. et al. Copy number variation: new insights in genome diversity. Genome Res. 16, 949–961 (2006).

    CAS  PubMed  Google Scholar 

  2. Conrad, D. F. et al. Origins and functional impact of copy number variation in the human genome. Nature 464, 704–712 (2010).

    CAS  PubMed  Google Scholar 

  3. Auwerx, C. et al. The individual and global impact of copy-number variants on complex human traits. Am. J. Hum. Genet. https://doi.org/10.1016/j.ajhg.2022.02.010 (2022).

  4. Jacquemont, S. et al. Genes to mental health (G2MH): a framework to map the combined effects of rare and common variants on dimensions of cognition and psychopathology. Am. J. Psychiatry 179, 189–203 (2021).

    Google Scholar 

  5. Rutkowski, T. P. et al. Unraveling the genetic architecture of copy number variants associated with schizophrenia and other neuropsychiatric disorders. J. Neurosci. Res. 95, 1144–1160 (2017).

    CAS  PubMed  Google Scholar 

  6. Lauer, S. & Gresham, D. An evolving view of copy number variants. Curr. Genet. 65, 1287–1295 (2019).

    CAS  PubMed  Google Scholar 

  7. Huguet, G. et al. Genome-wide analysis of gene dosage in 24,092 individuals estimates that 10,000 genes modulate cognitive ability. Mol. Psychiatry 26, 2663–2676 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Moberg, P. J. et al. Neurocognitive functioning in patients with 22q11.2 deletion syndrome: a meta-analytic review. Behav. Genet. 48, 259–270 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Silva, A. I. et al. Neuroimaging findings in neurodevelopmental copy number variants: identifying molecular pathways to convergent phenotypes. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2022.03.018 (2022).

  10. Chawner, S. J. R. A. et al. Genotype-phenotype associations in children with copy number variants associated with high neuropsychiatric risk in the UK (IMAGINE-ID): a case-control cohort study. Lancet Psychiatry 6, 493–505 (2019).

    PubMed  Google Scholar 

  11. Marshall, C. R. et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat. Genet. 49, 27–35 (2017).

    CAS  PubMed  Google Scholar 

  12. Sanders, S. J. et al. A framework for the investigation of rare genetic disorders in neuropsychiatry. Nat. Med. 25, 1477–1487 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Moreno-De-Luca, D. & Martin, C. L. All for one and one for all: heterogeneity of genetic etiologies in neurodevelopmental psychiatric disorders. Curr. Opin. Genet. Dev. 68, 71–78 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Crawford, K. et al. Medical consequences of pathogenic CNVs in adults: analysis of the UK Biobank. J. Med. Genet. 56, 131–138 (2019).

    CAS  PubMed  Google Scholar 

  15. Owen, D. et al. Effects of pathogenic CNVs on physical traits in participants of the UK Biobank. BMC Genomics 19, 867 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. Adams, R. L. et al. Psychopathology in adults with copy number variants. Psychol. Med. https://doi.org/10.1017/S0033291721005201 (2022).

  17. Kendall, K. M. et al. Cognitive performance and functional outcomes of carriers of pathogenic copy number variants: analysis of the UK Biobank. Br. J. Psychiatry 214, 297–304 (2019).

    PubMed  PubMed Central  Google Scholar 

  18. Doelken, S. C. et al. Phenotypic overlap in the contribution of individual genes to CNV pathogenicity revealed by cross-species computational analysis of single-gene mutations in humans, mice and zebrafish. Dis. Model. Mech. 6, 358–372 (2013).

    CAS  PubMed  Google Scholar 

  19. Viñas-Jornet, M. et al. High incidence of copy number variants in adults with intellectual disability and co-morbid psychiatric disorders. Behav. Genet. 48, 323–336 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Moreau, C. A. et al. Dissecting autism and schizophrenia through neuroimaging genomics. Brain 144, 1943–1957 (2021).

    PubMed  PubMed Central  Google Scholar 

  21. Moreau, C. A. et al. Mutations associated with neuropsychiatric conditions delineate functional brain connectivity dimensions contributing to autism and schizophrenia. Nat. Commun. 11, 5272 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Modenato, C. et al. Lessons learned from neuroimaging studies of copy number variants: a systematic review. Biol. Psychiatry 90, 596–610 (2021).

    PubMed  Google Scholar 

  23. Sønderby, I. E. et al. Effects of copy number variations on brain structure and risk for psychiatric illness: large-scale studies from the ENIGMA working groups on CNVs. Hum. Brain Mapp. 43, 300–328 (2022).

    PubMed  Google Scholar 

  24. Raznahan, A., Won, H., Glahn, D. C. & Jacquemont, S. Convergence and divergence of rare genetic disorders on brain phenotypes. JAMA Psychiatry 79, 818–828 (2022).

  25. Zinkstok, J. R. et al. Neurobiological perspective of 22q11.2 deletion syndrome. Lancet Psychiatry 6, 951–960 (2019).

    PubMed  PubMed Central  Google Scholar 

  26. Bzdok, D., Nichols, T. E. & Smith, S. M. Towards algorithmic analytics for large-scale datasets. Nat. Mach. Intell. 1, 296–306 (2019).

    PubMed  PubMed Central  Google Scholar 

  27. Bzdok, D. & Yeo, B. T. T. Inference in the age of big data: future perspectives on neuroscience. Neuroimage 155, 549–564 (2017).

    PubMed  Google Scholar 

  28. Littlejohns, T. J. et al. The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions. Nat. Commun. 11, 2624 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Weiss, L. A. et al. Association between microdeletion and microduplication at 16p11.2 and autism. N. Engl. J. Med. 358, 667–675 (2008).

    CAS  PubMed  Google Scholar 

  30. Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gottesman, I. I. & Gould, T. D. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry 160, 636–645 (2003).

    PubMed  Google Scholar 

  32. Mark, W. & Toulopoulou, T. Cognitive intermediate phenotype and genetic risk for psychosis. Curr. Opin. Neurobiol. 36, 23–30 (2016).

    CAS  PubMed  Google Scholar 

  33. Meyer-Lindenberg, A. & Weinberger, D. R. Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat. Rev. Neurosci. 7, 818–827 (2006).

    CAS  PubMed  Google Scholar 

  34. Lin, A. et al. Mapping 22q11.2 gene dosage effects on brain morphometry. J. Neurosci. 37, 6183–6199 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Martin-Brevet, S. et al. Quantifying the effects of 16p11.2 copy number variants on brain structure: a multisite genetic-first study. Biol. Psychiatry 84, 253–264 (2018).

    CAS  PubMed  Google Scholar 

  36. Sun, D. et al. Large-scale mapping of cortical alterations in 22q11.2 deletion syndrome: convergence with idiopathic psychosis and effects of deletion size. Mol. Psychiatry 25, 1822–1834 (2020).

    CAS  PubMed  Google Scholar 

  37. Bracher-Smith, M. et al. Effects of pathogenic CNVs on biochemical markers: a study on the UK Biobank. Preprint at bioRxiv https://doi.org/10.1101/723270 (2019).

  38. Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Momma, K. Cardiovascular anomalies associated with chromosome 22q11.2 deletion syndrome. Am. J. Cardiol. 105, 1617–1624 (2010).

    CAS  PubMed  Google Scholar 

  40. Pillinger, T., D’Ambrosio, E., McCutcheon, R. & Howes, O. D. Is psychosis a multisystem disorder? A meta-review of central nervous system, immune, cardiometabolic, and endocrine alterations in first-episode psychosis and perspective on potential models. Mol. Psychiatry 24, 776–794 (2019).

    CAS  PubMed  Google Scholar 

  41. Van, L. et al. All-cause mortality and survival in adults with 22q11.2 deletion syndrome. Genet. Med. 21, 2328–2335 (2019).

    PubMed  PubMed Central  Google Scholar 

  42. Kessler, R. C. et al. Lifetime prevalence and age-of-onset distributions of mental disorders in the World Health Organization’s World Mental Health Survey Initiative. World Psychiatry 6, 168–176 (2007).

    PubMed  PubMed Central  Google Scholar 

  43. Correll, C. U. et al. Prevalence, incidence and mortality from cardiovascular disease in patients with pooled and specific severe mental illness: a large-scale meta-analysis of 3,211,768 patients and 113,383,368 controls. World Psychiatry 16, 163–180 (2017).

    PubMed  PubMed Central  Google Scholar 

  44. Hoang, U., Goldacre, M. J. & Stewart, R. Avoidable mortality in people with schizophrenia or bipolar disorder in England. Acta Psychiatr. Scand. 127, 195–201 (2013).

    CAS  PubMed  Google Scholar 

  45. Kirov, G. et al. The penetrance of copy number variations for schizophrenia and developmental delay. Biol. Psychiatry 75, 378–385 (2014).

    CAS  PubMed  Google Scholar 

  46. Chawner, S. J., Watson, C. J. & Owen, M. J. Clinical evaluation of patients with a neuropsychiatric risk copy number variant. Curr. Opin. Genet. Dev. 68, 26–34 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Alessi, M. G. & Bennett, J. M. Mental health is the health of the whole body: how psychoneuroimmunology and health psychology can inform and improve treatment. J. Eval. Clin. Pract. 26, 1539–1547 (2020).

    PubMed  Google Scholar 

  48. Guest, P. C. in Biomarkers and Mental Illness: It’s Not All in the Mind (ed. Guest, P. C.) 3–16 (Springer, 2017).

  49. Kohane, I. S. et al. The co-morbidity burden of children and young adults with autism spectrum disorders. PLoS ONE 7, e33224 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sotelo, J. L. & Nemeroff, C. B. Depression as a systemic disease. Pers. Med. Psychiatry 1–2, 11–25 (2017).

    Google Scholar 

  51. Leboyer, M. et al. Can bipolar disorder be viewed as a multi-system inflammatory disease? J. Affect. Disord. 141, 1–10 (2012).

    PubMed  PubMed Central  Google Scholar 

  52. Leppert, B. et al. A cross-disorder PRS-pheWAS of 5 major psychiatric disorders in UK Biobank. PLoS Genet. 16, e1008185 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Thompson, P. M. et al. Genetic influences on brain structure. Nat. Neurosci. 4, 1253–1258 (2001).

    CAS  PubMed  Google Scholar 

  54. Bacchelli, E. et al. An integrated analysis of rare CNV and exome variation in Autism Spectrum Disorder using the Infinium PsychArray. Sci. Rep. 10, 3198 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gratten, J. & Visscher, P. M. Genetic pleiotropy in complex traits and diseases: implications for genomic medicine. Genome Med. 8, 78 (2016).

    PubMed  PubMed Central  Google Scholar 

  56. Seidlitz, J. et al. Transcriptomic and cellular decoding of regional brain vulnerability to neurogenetic disorders. Nat. Commun. 11, 3358 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Moreau, C. A., Ching, C. R., Kumar, K., Jacquemont, S. & Bearden, C. E. Structural and functional brain alterations revealed by neuroimaging in CNV carriers. Curr. Opin. Genet. Dev. 68, 88–98 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Rogdaki, M. et al. Magnitude and heterogeneity of brain structural abnormalities in 22q11.2 deletion syndrome: a meta-analysis. Mol. Psychiatry 25, 1704–1717 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wysocki, A. C., Lawson, K. M. & Rhemtulla, M. Statistical control requires causal justification. Adv. Methods Pract. Psychol. Sci. https://doi.org/10.1177/25152459221095823 (2022).

  60. Modenato, C. et al. Effects of eight neuropsychiatric copy number variants on human brain structure. Transl. Psychiatry 11, 399 (2021).

  61. Ashburner, J. A fast diffeomorphic image registration algorithm. NeuroImage 38, 95–113 (2007).

    PubMed  Google Scholar 

  62. Ashburner, J. & Friston, K. J. Unified segmentation. NeuroImage 26, 839–851 (2005).

    PubMed  Google Scholar 

  63. Lorio, S. et al. New tissue priors for improved automated classification of subcortical brain structures on MRI. NeuroImage 130, 157–166 (2016).

    CAS  PubMed  Google Scholar 

  64. Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).

    PubMed  Google Scholar 

  65. Alfaro-Almagro, F. et al. Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank. NeuroImage 166, 400–424 (2018).

    PubMed  Google Scholar 

  66. Smith, S. M. Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155 (2002).

    PubMed  PubMed Central  Google Scholar 

  67. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17, 825–841 (2002).

    PubMed  Google Scholar 

  68. Andersson, J. L., Jenkinson, M. & Smith, S. Non-linear Registration aka Spatial Normalisation FMRIB Technical Report TR07JA2 (FMRIB Analyis Group Univ. Oxford, 2007).

  69. Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2001).

    CAS  PubMed  Google Scholar 

  70. Schurz, M. et al. Variability in brain structure and function reflects lack of peer support. Cereb. Cortex 31, 4612–4627 (2021).

    PubMed  PubMed Central  Google Scholar 

  71. Spreng, R. N. et al. The default network of the human brain is associated with perceived social isolation. Nat. Commun. 11, 6393 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Alexander-Bloch, A., Giedd, J. N. & Bullmore, E. Imaging structural co-variance between human brain regions. Nat. Rev. Neurosci. 14, 322–336 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Savignac, C. et al. APOE ɛ2 vs APOE ɛ4 dosage shows sex-specific links to hippocampus-default network subregion co-variation. PLOS Biology 20, e3001863 (2022).

  74. Millard, L. A. C., Davies, N. M., Gaunt, T. R., Davey Smith, G. & Tilling, K. Software application profile: PHESANT: a tool for performing automated phenome scans in UK Biobank. Int. J. Epidemiol. 47, 29–35 (2018).

    PubMed  Google Scholar 

  75. Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2nd edn (Springer, 2009).

  76. Bzdok, D. & Ioannidis, J. P. A. Exploration, inference, and prediction in neuroscience and biomedicine. Trends Neurosci. 42, 251–262 (2019).

    CAS  PubMed  Google Scholar 

  77. Duda, R. O., Hart, P. E. & Stork, D. G. Pattern Classification (Wiley, 2000).

    Google Scholar 

  78. Breiman, L. Bagging predictors. Mach. Learn. 24, 123–140 (1996).

    Google Scholar 

  79. Chicco, D. & Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21, 6 (2020).

    PubMed  PubMed Central  Google Scholar 

  80. Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (CRC Press, 1994).

  81. Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D.B. was supported by the Brain Canada Foundation, through the Canada Brain Research Fund, with the financial support of Health Canada, the National Institutes of Health (NIH R01 AG068563A, NIH R01 R01DA053301-01A1), the Canadian Institute of Health Research (CIHR 438531, CIHR 470425), the Healthy Brains Healthy Lives initiative (Canada First Research Excellence fund), Google (Research Award, Teaching Award) and by the CIFAR Artificial Intelligence Chairs programme (Canada Institute for Advanced Research). This research was supported by Calcul Quebec (http://www.calculquebec.ca) and Compute Canada (http://www.computecanada.ca), the Brain Canada Multi-Investigator initiative, the Canadian Institutes of Health Research, CIHR_400528, the Institute of Data Valorization (IVADO) through the Canada First Research Excellence Fund, Healthy Brains for Healthy Lives through the Canada First Research Excellence Fund. S.J. is a recipient of a Canada Research Chair in neurodevelopmental disorders and a chair from the Jeanne et Jean Louis Levesque Foundation. The Cardiff CNV cohort was supported by the Wellcome Trust Strategic Award ‘DEFINE’ and the National Centre for Mental Health with funds from Health and Care Research Wales (code 100202/Z/12/Z). The CHUV cohort was supported by the SNF (Maillard Anne, Project PMPDP3 171331). Data from the UCLA cohort provided by C.E.B. (participants with 22q11.2 deletions or duplications and controls) were supported through grants from the NIH (U54EB020403), NIMH (R01MH085953, R01MH100900, R03MH105808) and the Simons Foundation (SFARI Explorer Award). K.K. was supported by the Institute of Data Valorization (IVADO) Postdoctoral Fellowship programme through the Canada First Research Excellence Fund. I.E.S. was supported by the Research Council of Norway (No. 223273), South-Eastern Norway Regional Health Authority (No. 2020060), European Union’s Horizon2020 Research and Innovation Programme (CoMorMent project; Grant No. 847776) and Kristian Gerhard Jebsen Stiftelsen (SKGJ-MED-021). We thank all of the families participating at the Simons Searchlight sites and the 16p11.2 European Consortium, Simons Searchlight Consortium. We appreciate obtaining access to brain-imaging and phenotypic data on SFARI Base. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the paper.

Author information

Authors and Affiliations

Authors

Contributions

J.K., D.B. and S.J. designed the study, analysed imaging data and drafted the paper. J.K., C.M. and K.K. did all the preprocessing and analysis of neuroimaging data. K.S. provided scripts for the PheWAS analysis. D.B. and S.J. contributed to the interpretation of the results and the editing of the paper. C.M., A.M.M., A.P., S.R. and S.M.-B. recruited and scanned participants in the 16p11.2 European Consortium. S.L., C.-O.M., N.Y., P.T. and E.D. recruited and scanned participants in the Brain Canada cohort. L.K. collected and provided the data for the UCLA cohort. D.E.J.L., M.J.O., M.B.M.v.d.B., J.H. and A.I.S. provided the data for the Cardiff cohort. All authors provided feedback on the paper. D.B. led data analytics.

Corresponding author

Correspondence to Danilo Bzdok.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Toru Takumi, Serafeim Loukas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14 and consortia members.

Reporting Summary

Source data

Source Data Fig. 1

Cohen’s d brain maps and their similarity, and PC and LDA embedding of CNV carriers.

Source Data Fig. 2

Performance of LDA models, LDA coefficients and their similarity.

Source Data Fig. 3

Significant LDA coefficients and their association with Cohen’s d, sample size, classification accuracy and CNV attributes.

Source Data Fig. 4

LDA expression in clinical dataset and UK Biobank, PheWAS analysis and percentages of associated phenotypes.

Source Data Fig. 5

PheWAS analyses and their similarities.

Source Data Fig. 6

Most commonly and strongly associated phenotypes, additional PheWAS analysis, and comparison of volumetric and phenotypic similarity.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopal, J., Kumar, K., Saltoun, K. et al. Rare CNVs and phenome-wide profiling highlight brain structural divergence and phenotypical convergence. Nat Hum Behav 7, 1001–1017 (2023). https://doi.org/10.1038/s41562-023-01541-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-023-01541-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing