Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A transdiagnostic network for psychiatric illness derived from atrophy and lesions

Abstract

Psychiatric disorders share neurobiology and frequently co-occur. This neurobiological and clinical overlap highlights opportunities for transdiagnostic treatments. In this study, we used coordinate and lesion network mapping to test for a shared brain network across psychiatric disorders. In our meta-analysis of 193 studies, atrophy coordinates across six psychiatric disorders mapped to a common brain network defined by positive connectivity to anterior cingulate and insula, and by negative connectivity to posterior parietal and lateral occipital cortex. This network was robust to leave-one-diagnosis-out cross-validation and specific to atrophy coordinates from psychiatric versus neurodegenerative disorders (72 studies). In 194 patients with penetrating head trauma, lesion damage to this network correlated with the number of post-lesion psychiatric diagnoses. Neurosurgical ablation targets for psychiatric illness (four targets) also aligned with the network. This convergent brain network for psychiatric illness may partially explain high rates of psychiatric comorbidity and could highlight neuromodulation targets for patients with more than one psychiatric disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mapping atrophy coordinates in psychiatric illness to networks rather than regions.
Fig. 2: Network mapping results align better with lesion-induced psychiatric diagnoses than traditional ALE.
Fig. 3: Convergent network topography across atrophy and brain lesions associated with psychiatric illness.
Fig. 4: Alignment between neurosurgical ablation targets for psychiatric disorders and our coordinate-based transdiagnostic network.

Similar content being viewed by others

Data availability

This paper used de-identified data from multiple datasets collected by different investigators at different institutions. Datasets 1 (https://doi.org/10.1001/jamapsychiatry.2014.2206), 2 (https://doi.org/10.1093/brain/awy292) and 4 (https://doi.org/10.1038/npp.2010.132) are publicly available peer-reviewed publications. Inquiries regarding the Vietnam Head Injury Study (Dataset 3) can be directed to J.G. (jgrafman@northwestern.edu). The one-sample t-test transdiagnostic network is available at https://github.com/nimlab/NHB_Taylor2023.

Code availability

GingerALE is publicly available. The custom MATLAB and Python code used in this study is available at https://github.com/nimlab/NHB_Taylor2023.

References

  1. Barch, D. M. What does it mean to be transdiagnostic and how would we know? Am. J. Psychiatry 177, 370–372 (2020).

    Article  PubMed  Google Scholar 

  2. Newman, D. L., Moffitt, T. E., Caspi, A. & Silva, P. A. Comorbid mental disorders: implications for treatment and sample selection. J. Abnorm. Psychol. 107, 305–311 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Kessler, R. C., Chiu, W. T., Demler, O., Merikangas, K. R. & Walters, E. E. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 617–627 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Goldstein-Piekarski, A. N., Williams, L. M. & Humphreys, K. A trans-diagnostic review of anxiety disorder comorbidity and the impact of multiple exclusion criteria on studying clinical outcomes in anxiety disorders. Transl. Psychiatry 6, e847 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Caspi, A. & Moffitt, T. E. All for one and one for all: mental disorders in one dimension. Am. J. Psychiatry 175, 831–844 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Grisanzio, K. A. et al. Transdiagnostic symptom clusters and associations with brain, behavior, and daily function in mood, anxiety, and trauma disorders. JAMA Psychiatry 75, 201–209 (2018).

    Article  PubMed  Google Scholar 

  7. Caspi, A. et al. Longitudinal assessment of mental health disorders and comorbidities across 4 decades among participants in the Dunedin birth cohort study. JAMA Netw. Open 3, e203221 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hyman, S. E. The diagnosis of mental disorders: the problem of reification. Annu. Rev. Clin. Psychol. 6, 155–179 (2010).

    Article  PubMed  Google Scholar 

  9. Kessler, R. C. et al. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States: results from the National Comorbidity Survey. Arch. Gen. Psychiatry 51, 8–19 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. McGrath, J. J. et al. Comorbidity within mental disorders: a comprehensive analysis based on 145 990 survey respondents from 27 countries. Epidemiol. Psychiatr. Sci. 29, e153 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Plana-Ripoll, O. et al. Nature and prevalence of combinations of mental disorders and their association with excess mortality in a population-based cohort study. World Psychiatry 19, 339–349 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Plana-Ripoll, O. et al. A comprehensive analysis of mortality-related health metrics associated with mental disorders: a nationwide, register-based cohort study. Lancet 394, 1827–1835 (2019).

    Article  PubMed  Google Scholar 

  13. Fridell, M. et al. Prediction of psychiatric comorbidity on premature death in a cohort of patients with substance use disorders: a 42-year follow-up. BMC Psychiatry 19, 150 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Trivedi, M. H. et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am. J. Psychiatry 163, 28–40 (2006).

    Article  PubMed  Google Scholar 

  15. Saravay, S. M. & Lavin, M. Psychiatric comorbidity and length of stay in the general hospital: a critical review of outcome studies. Psychosomatics 35, 233–252 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Mojtabai, R. & Olfson, M. National trends in psychotropic medication polypharmacy in office-based psychiatry. Arch. Gen. Psychiatry 67, 26–36 (2010).

    Article  PubMed  Google Scholar 

  17. Sareen, J. et al. Anxiety disorders and risk for suicidal ideation and suicide attempts: a population-based longitudinal study of adults. Arch. Gen. Psychiatry 62, 1249–1257 (2005).

    Article  PubMed  Google Scholar 

  18. Stein, D. J. Comorbidity in generalized anxiety disorder: impact and implications. J. Clin. Psychiatry 62, 29–34 (2001).

    PubMed  Google Scholar 

  19. Wittchen, H. U., Zhao, S., Kessler, R. C. & Eaton, W. W. DSM-III-R generalized anxiety disorder in the National Comorbidity Survey. Arch. Gen. Psychiatry 51, 355–364 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Cacciola, J. S., Alterman, A. I., Rutherford, M. J., McKay, J. R. & Mulvaney, F. D. The relationship of psychiatric comorbidity to treatment outcomes in methadone maintained patients. Drug Alcohol Depend. 61, 271–280 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Souery, D. et al. Clinical factors associated with treatment resistance in major depressive disorder: results from a European multicenter study. J. Clin. Psychiatry 68, 1062–1070 (2007).

    Article  PubMed  Google Scholar 

  22. Maj, M. “Psychiatric comorbidity”: an artefact of current diagnostic systems? Br. J. Psychiatry 186, 182–184 (2005).

    Article  PubMed  Google Scholar 

  23. van Loo, H. M., Romeijn, J. W., de Jonge, P. & Schoevers, R. A. Psychiatric comorbidity and causal disease models. Prev. Med. 57, 748–752 (2013).

    Article  PubMed  Google Scholar 

  24. Caspi, A. et al. The p factor: one general psychopathology factor in the structure of psychiatric disorders? Clin. Psychol. Sci. 2, 119–137 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Moore, T. M. et al. Development of a computerized adaptive screening tool for overall psychopathology (“p”). J. Psychiatr. Res. 116, 26–33 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sprooten, E., Franke, B. & Greven, C. U. The P-factor and its genomic and neural equivalents: an integrated perspective. Mol. Psychiatry 27, 38–48 (2022).

    Article  PubMed  Google Scholar 

  27. Fried, E. I., Greene, A. L. & Eaton, N. R. The p factor is the sum of its parts, for now. World Psychiatry 20, 69–70 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huang, J. et al. Cross-disorder genomewide analysis of schizophrenia, bipolar disorder, and depression. Am. J. Psychiatry 167, 1254–1263 (2010).

    Article  PubMed  Google Scholar 

  29. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371–1379 (2013).

    Article  PubMed Central  Google Scholar 

  30. Brainstorm, C. et al. Analysis of shared heritability in common disorders of the brain. Science https://doi.org/10.1126/science.aap8757 (2018).

  31. Cross-Disorder Group of the Psychiatric Genomics Consortiumet al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat. Genet. 45, 984–994 (2013).

    Article  PubMed Central  Google Scholar 

  32. Sanders, S. J. et al. Whole genome sequencing in psychiatric disorders: the WGSPD consortium. Nat. Neurosci. 20, 1661–1668 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoeffding, L. K. et al. Risk of psychiatric disorders among individuals with the 22q11.2 deletion or duplication: a Danish nationwide, register-based study. JAMA Psychiatry 74, 282–290 (2017).

    Article  PubMed  Google Scholar 

  34. Cross-Disorder Group of the Psychiatric Genomics Consortium. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell 179, 1469–1482e1411 (2019).

    Article  PubMed Central  Google Scholar 

  35. Hyman, S. E. New evidence for shared risk architecture of mental disorders. JAMA Psychiatry 76, 235–236 (2019).

    Article  PubMed  Google Scholar 

  36. Plana-Ripoll, O. et al. Exploring comorbidity within mental disorders among a Danish national population. JAMA Psychiatry 76, 259–270 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lahey, B. B. et al. Is there a general factor of prevalent psychopathology during adulthood? J. Abnorm. Psychol. 121, 971–977 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Clark, L. A., Watson, D. & Reynolds, S. Diagnosis and classification of psychopathology: challenges to the current system and future directions. Annu. Rev. Psychol. 46, 121–153 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Lahey, B. B., Krueger, R. F., Rathouz, P. J., Waldman, I. D. & Zald, D. H. A hierarchical causal taxonomy of psychopathology across the life span. Psychol. Bull. 143, 142–186 (2017).

    Article  PubMed  Google Scholar 

  40. Krueger, R. F. & Eaton, N. R. Transdiagnostic factors of mental disorders. World Psychiatry 14, 27–29 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fitzgerald, P. B. Targeting repetitive transcranial magnetic stimulation in depression: do we really know what we are stimulating and how best to do it? Brain Stimul. 14, 730–736 (2021).

    Article  PubMed  Google Scholar 

  42. Siddiqi, S. H., Weigand, A., Pascual-Leone, A. & Fox, M. D. Identification of personalized transcranial magnetic stimulation targets based on subgenual cingulate connectivity: an independent replication. Biol. Psychiatry 90, e55–e56 (2021).

    Article  PubMed  Google Scholar 

  43. Siddiqi, S. H. et al. Distinct symptom-specific treatment targets for circuit-based neuromodulation. Am. J. Psychiatry 177, 435–446 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cash, R. F. H. et al. Using brain imaging to improve spatial targeting of transcranial magnetic stimulation for depression. Biol. Psychiatry 90, 689–700 (2020).

    Article  PubMed  Google Scholar 

  45. Stelten, B. M., Noblesse, L. H., Ackermans, L., Temel, Y. & Visser-Vandewalle, V. The neurosurgical treatment of addiction. Neurosurg. Focus 25, E5 (2008).

    Article  PubMed  Google Scholar 

  46. Schoene-Bake, J. C. et al. Tractographic analysis of historical lesion surgery for depression. Neuropsychopharmacology 35, 2553–2563 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Patel, S. R., Aronson, J. P., Sheth, S. A. & Eskandar, E. N. Lesion procedures in psychiatric neurosurgery. World Neurosurg. 80, S31.e9–S31.e16 (2013).

    Article  PubMed  Google Scholar 

  48. Opel, N. et al. Cross-disorder analysis of brain structural abnormalities in six major psychiatric disorders: a secondary analysis of mega- and meta-analytical findings from the ENIGMA consortium. Biol. Psychiatry 88, 678–686 (2020).

    Article  PubMed  Google Scholar 

  49. Eckstrand, K. L. Shared versus disorder-specific brain morphometric features of major psychiatric disorders in adulthood. Biol. Psychiatry 88, e41–e43 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Goodkind, M. et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72, 305–315 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. McTeague, L. M. et al. Identification of common neural circuit disruptions in cognitive control across psychiatric disorders. Am. J. Psychiatry 174, 676–685 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mitelman, S. A. Transdiagnostic neuroimaging in psychiatry: a review. Psychiatry Res. 277, 23–38 (2019).

    Article  PubMed  Google Scholar 

  53. Zhukovsky, P. et al. Coordinate-based network mapping of brain structure in major depressive disorder in younger and older adults: a systematic review and meta-analysis. Am. J. Psychiatry 178, 1119–1128 (2021).

    Article  PubMed  Google Scholar 

  54. Darby, R. R., Joutsa, J. & Fox, M. D. Network localization of heterogeneous neuroimaging findings. Brain 142, 70–79 (2019).

    Article  PubMed  Google Scholar 

  55. Weil, R. S., Hsu, J. K., Darby, R. R., Soussand, L. & Fox, M. D. Neuroimaging in Parkinson’s disease dementia: connecting the dots. Brain Commun. 1, fcz006 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fox, M. D. Mapping symptoms to brain networks with the human connectome. N. Engl. J. Med. 379, 2237–2245 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Taylor, J. J., Siddiqi, S. H. & Fox, M. D. Coordinate network mapping: an emerging approach for morphometric meta-analysis. Am. J. Psychiatry 178, 1080–1081 (2021).

    Article  PubMed  Google Scholar 

  58. Eickhoff, S. B. et al. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum. Brain Mapp. 30, 2907–2926 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Siddiqi, S. H., Kording, K. P., Parvizi, J. & Fox, M. D. Causal mapping of human brain function. Nat. Rev. Neurosci. 23, 361–375 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Etkin, A. Addressing the causality gap in human psychiatric neuroscience. JAMA Psychiatry 75, 3–4 (2017).

    Article  Google Scholar 

  61. Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C. & Yeo, B. T. The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 2322–2345 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Elliott, M. L., Romer, A., Knodt, A. R. & Hariri, A. R. A connectome-wide functional signature of transdiagnostic risk for mental illness. Biol. Psychiatry 84, 452–459 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Taquet, M. et al. A structural brain network of genetic vulnerability to psychiatric illness. Mol. Psychiatry 26, 2089–2100 (2021).

    Article  PubMed  Google Scholar 

  64. Sheffield, J. M. et al. Transdiagnostic associations between functional brain network integrity and cognition. JAMA Psychiatry 74, 605–613 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Barch, D. M. The neural correlates of transdiagnostic dimensions of psychopathology. Am. J. Psychiatry 174, 613–615 (2017).

    Article  PubMed  Google Scholar 

  66. Sharma, A. et al. Common dimensional reward deficits across mood and psychotic disorders: a connectome-wide association study. Am. J. Psychiatry 174, 657–666 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. McTeague, L. M., Goodkind, M. S. & Etkin, A. Transdiagnostic impairment of cognitive control in mental illness. J. Psychiatr. Res. 83, 37–46 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Romer, A. L. et al. Pervasively thinner neocortex as a transdiagnostic feature of general psychopathology. Am. J. Psychiatry 178, 174–182 (2021).

    Article  PubMed  Google Scholar 

  69. McTeague, L. M. et al. Identification of common neural circuit disruptions in emotional processing across psychiatric disorders. Am. J. Psychiatry 177, 411–421 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Romer, A. L. et al. Replicability of structural brain alterations associated with general psychopathology: evidence from a population-representative birth cohort. Mol. Psychiatry 26, 3839–3846 (2021).

    Article  PubMed  Google Scholar 

  71. Romer, A. L. et al. Structural alterations within cerebellar circuitry are associated with general liability for common mental disorders. Mol. Psychiatry 23, 1084–1090 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Hamilton, J. P. et al. Functional neuroimaging of major depressive disorder: a meta-analysis and new integration of base line activation and neural response data. Am. J. Psychiatry 169, 693–703 (2012).

    Article  PubMed  Google Scholar 

  73. Gursel, D. A., Avram, M., Sorg, C., Brandl, F. & Koch, K. Frontoparietal areas link impairments of large-scale intrinsic brain networks with aberrant fronto-striatal interactions in OCD: a meta-analysis of resting-state functional connectivity. Neurosci. Biobehav. Rev. 87, 151–160 (2018).

    Article  PubMed  Google Scholar 

  74. Patel, R., Spreng, R. N., Shin, L. M. & Girard, T. A. Neurocircuitry models of posttraumatic stress disorder and beyond: a meta-analysis of functional neuroimaging studies. Neurosci. Biobehav. Rev. 36, 2130–2142 (2012).

    Article  PubMed  Google Scholar 

  75. Peters, S. K., Dunlop, K. & Downar, J. Cortico-striatal-thalamic loop circuits of the salience network: a central pathway in psychiatric disease and treatment. Front. Syst. Neurosci. 10, 104 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Rushworth, M. F., Paus, T. & Sipila, P. K. Attention systems and the organization of the human parietal cortex. J. Neurosci. 21, 5262–5271 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Arnsten, A. F. & Rubia, K. Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: disruptions in neurodevelopmental psychiatric disorders. J. Am. Acad. Child Adolesc. Psychiatry 51, 356–367 (2012).

    Article  PubMed  Google Scholar 

  78. Lee, K. H. et al. Neural correlates of superior intelligence: stronger recruitment of posterior parietal cortex. Neuroimage 29, 578–586 (2006).

    Article  PubMed  Google Scholar 

  79. Moran, J. & Desimone, R. Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985).

    Article  CAS  PubMed  Google Scholar 

  80. Tallon-Baudry, C., Bertrand, O., Henaff, M. A., Isnard, J. & Fischer, C. Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus. Cereb. Cortex 15, 654–662 (2005).

    Article  PubMed  Google Scholar 

  81. Karten, A., Pantazatos, S. P., Khalil, D., Zhang, X. & Hirsch, J. Dynamic coupling between the lateral occipital-cortex, default-mode, and frontoparietal networks during bistable perception. Brain Connect. 3, 286–293 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Grill-Spector, K., Kourtzi, Z. & Kanwisher, N. The lateral occipital complex and its role in object recognition. Vis. Res. 41, 1409–1422 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Plewan, T., Weidner, R., Eickhoff, S. B. & Fink, G. R. Ventral and dorsal stream interactions during the perception of the Muller–Lyer illusion: evidence derived from fMRI and dynamic causal modeling. J. Cogn. Neurosci. 24, 2015–2029 (2012).

    Article  PubMed  Google Scholar 

  84. Vander Wyk, B. C. et al. Cortical integration of audio-visual speech and non-speech stimuli. Brain Cogn. 74, 97–106 (2010).

    Article  Google Scholar 

  85. Naumer, M. J. et al. Visuohaptic convergence in a corticocerebellar network. Eur. J. Neurosci. 31, 1730–1736 (2010).

    Article  PubMed  Google Scholar 

  86. Moberget, T. et al. Cerebellar gray matter volume is associated with cognitive function and psychopathology in adolescence. Biol. Psychiatry 86, 65–75 (2019).

    Article  PubMed  Google Scholar 

  87. Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15, 483–506 (2011).

    Article  PubMed  Google Scholar 

  88. Arnone, D. et al. State-dependent changes in hippocampal grey matter in depression. Mol. Psychiatry 18, 1265–1272 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Rashidi-Ranjbar, N. et al. Frontal-executive and corticolimbic structural brain circuitry in older people with remitted depression, mild cognitive impairment, Alzheimer’s dementia, and normal cognition. Neuropsychopharmacology 45, 1567–1578 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Nuninga, J. O., Mandl, R. C. W. & Sommer, I. E. C. Clinical relevance of brain changes after electroconvulsive therapy: is there really no link at all? Biol. Psychiatry 89, e13–e14 (2021).

    Article  PubMed  Google Scholar 

  91. Marinescu, I. E., Lawlor, P. N. & Kording, K. P. Quasi-experimental causality in neuroscience and behavioural research. Nat. Hum. Behav. 2, 891–898 (2018).

    Article  PubMed  Google Scholar 

  92. Etkin, A. A reckoning and research agenda for neuroimaging in psychiatry. Am. J. Psychiatry 176, 507–511 (2019).

    Article  PubMed  Google Scholar 

  93. Lariviere, S. et al. Network-based atrophy modeling in the common epilepsies: a worldwide ENIGMA study. Sci. Adv. https://doi.org/10.1126/sciadv.abc6457 (2020).

  94. Whelan, C. D. et al. Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain 141, 391–408 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Galovic, M. et al. Resective surgery prevents progressive cortical thinning in temporal lobe epilepsy. Brain 143, 3262–3272 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Keramatian, K., Su, W., Saraf, G., Chakrabarty, T. & Yatham, L. N. Preservation of gray matter volume in early stage of bipolar disorder: a case for early intervention. Can. J. Psychiatry 66, 139–146 (2021).

    Article  PubMed  Google Scholar 

  97. Moylan, S., Maes, M., Wray, N. R. & Berk, M. The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol. Psychiatry 18, 595–606 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Fineberg, N. A. et al. Early intervention for obsessive compulsive disorder: an expert consensus statement. Eur. Neuropsychopharmacol. 29, 549–565 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Ganos, C. et al. A neural network for tics: insights from causal brain lesions and deep brain stimulation. Brain https://doi.org/10.1093/brain/awac009 (2022).

  100. Siddiqi, S. H. et al. Convergent causal mapping of human neuropsychiatric symptoms using brain stimulation and brain lesions. Nat. Hum. Behav. (in the press).

  101. Reich, M. M. et al. A brain network for deep brain stimulation induced cognitive decline in Parkinson’s disease. Brain 145, 1410–1421 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Weigand, A. et al. Prospective validation that subgenual connectivity predicts antidepressant efficacy of transcranial magnetic stimulation sites. Biol. Psychiatry 84, 28–37 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Grafman, J., Salazar, A. M., Weingartner, H. & Amin, D. Face memory and discrimination: an analysis of the persistent effects of penetrating brain wounds. Int. J. Neurosci. 29, 125–139 (1986).

    Article  CAS  PubMed  Google Scholar 

  104. Raymont, V., Salazar, A. M., Krueger, F. & Grafman, J. “Studying injured minds”—the Vietnam head injury study and 40 years of brain injury research. Front. Neurol. 2, 15 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Koenigs, M. et al. Focal brain damage protects against post-traumatic stress disorder in combat veterans. Nat. Neurosci. 11, 232–237 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Padmanabhan, J. L. et al. A human depression circuit derived from focal brain lesions. Biol. Psychiatry 86, 749–758 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F. & Fox, P. T. Activation likelihood estimation meta-analysis revisited. Neuroimage 59, 2349–2361 (2012).

    Article  PubMed  Google Scholar 

  108. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  Google Scholar 

  109. Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S. M. FSL. Neuroimage 62, 782–790 (2012).

    Article  PubMed  Google Scholar 

  110. Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M. & Nichols, T. E. Permutation inference for the general linear model. Neuroimage 92, 381–397 (2014).

    Article  PubMed  Google Scholar 

  111. Ferguson, M. A. et al. A human memory circuit derived from brain lesions causing amnesia. Nat. Commun. 10, 3497 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the authors of Schoene-Bake et al.46, who provided us with simulated lesions from their work. We also thank W. Drew and J. Li for their technical support and P. Flynn for his administrative support. The authors received no specific funding for this work. J.J.T.: Harvard Medical School (Dupont Warren Fellowship Award and Livingston Award), Brain and Behavior Research Foundation Young Investigator Grant (no. 31081), Sidney R. Baer, Jr. Foundation, Baszucki Brain Research Fund, and the NIH (grant nos K23MH129829 and R01MH113929). C.L.: none. D.T.: NIMH T32 fellowship (no. T32MH020004) and Harvard Medical School (Dupont Warren Fellowship Award). M.A.F.: none. F.L.W.V.J.S.: Epilepsy Society (grant no. 846534). J.J.: Brain and Behavior Research Foundation Young Investigator Grant (no. 29441). M.G.: none. J.G.: none. A.E.: none. S.H.S.: NIH (grant nos K23MH121657 and R21MH126271), Brain and Behavior Research Foundation Young Investigator Grant, Neuronetics investigator-initiated grant, Baszucki Brain Research Fund, and Department of Veterans Affairs (grant no. I01CX002293). M.D.F.: the Nancy Lurie Marks Foundation, the Kaye Family Research Endowment, Baszucki Brain Research Fund and the NIH (grant nos R01MH113929, R21MH126271, R56AG069086, R01MH115949 and R01AG060987).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the study: J.J.T., D.T., S.H.S. and M.D.F. Design of the analytical procedures: J.J.T., F.L.W.V.J.S., M.A.F., S.H.S. and M.D.F. Preprocessing and preparation of the data for the analyses: J.J.T., C.L., D.T., M.A.F., F.L.W.V.J.S., J.J., M.G., J.G., A.E., S.H.S. and M.D.F. Neuroimaging analyses and statistical analyses: J.J.T., C.L., M.A.F., F.L.W.V.J.S., J.J., S.H.S. and M.D.F. Contribution of the data: M.G., J.G., A.E., S.H.S. and M.D.F. Interpretation of the analyses and writing of the manuscript: J.J.T., S.H.S. and M.D.F., with input from all authors.

Corresponding author

Correspondence to Joseph J. Taylor.

Ethics declarations

Competing interests

J.J.T.: none. C.L.: none. D.T.: none. M.A.F.: none. F.L.W.V.J.S.: none. J.J.: none. M.G.: none. J.G.: none. A.E.: salary and equity from Alto Neuroscience, and equity from Mindstrong Health and Akili Interactive. S.H.S.: owner of intellectual property involving the use of brain connectivity to target TMS, scientific consultant for Magnus Medical, investigator-initiated research funding from Neuronetics and Brainsway, speaking fees from Brainsway and Otsuka (for PsychU.org), shareholder in Brainsway (publicly traded) and Magnus Medical (not publicly traded). None of these entities were directly involved in the present work. M.D.F.: scientific consultant for Magnus Medical, owner of independent intellectual property involving the use of functional connectivity to target TMS. This intellectual property was not used in the present manuscript.

Peer review

Peer review information

Nature Human Behaviour thanks Carissa Philippi, Ronny Redlich and Adrienne Romer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and tables.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, J.J., Lin, C., Talmasov, D. et al. A transdiagnostic network for psychiatric illness derived from atrophy and lesions. Nat Hum Behav 7, 420–429 (2023). https://doi.org/10.1038/s41562-022-01501-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-022-01501-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing