Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation network mapping for integration of heterogeneous fMRI findings

Abstract

Functional neuroimaging techniques have been widely used to probe the neural substrates of facial emotion processing in healthy people. However, findings are largely inconsistent across studies. Here, we introduce a new technique termed activation network mapping to examine whether heterogeneous functional magnetic resonance imaging findings localize to a common network for emotion processing. First, using the existing method of activation likelihood estimation meta-analysis, we showed that individual-brain-based reproducibility was low across studies. Second, using activation network mapping, we found that network-based reproducibility across these same studies was higher. Validation analysis indicated that the activation network mapping-localized network aligned with stimulation sites, structural abnormalities and brain lesions that disrupt facial emotion processing. Finally, we verified the generality of the activation network mapping technique by applying it to another cognitive process, that is, rumination. Activation network mapping may potentially be broadly applicable to localize brain networks of cognitive functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ANM technique.
Fig. 2: Network localization partly explains the poor reproducibility of functional neuroimaging studies of facial emotion processing.
Fig. 3: ALE and ANM results of emotion-general expression processing.
Fig. 4: The network derived from brain activations during facial emotion processing aligns well with TMS stimulations disrupting facial emotion processing.
Fig. 5: Relevance to structural abnormalities in alexithymia.
Fig. 6: Relevance to lesions that disrupt facial emotion processing.
Fig. 7: Heterogeneous neuroimaging findings of rumination are part of a common network.

Similar content being viewed by others

Data availability

The normative connectome datasets are publicly available from the Human Connectome Project (HCP, https://www.humanconnectome.org) and the Genome Superstruct Project (GSP); The coordinate information for both the facial emotion processing and non-emotional processing, as well as the raw images for all figures in the main text and Supplementary Information, are publicly available at https://github.com/sailingpeng/2021_ActivationNetworkMapping.git.

Code availability

Custom codes for ANM analysis are publicly available on GitHub (https://github.com/sailingpeng/2021_ActivationNetworkMapping.git).

References

  1. Hamann, S. Mapping discrete and dimensional emotions onto the brain: controversies and consensus. Trends Cogn. Sci. 16, 458–466 (2012).

    Article  PubMed  Google Scholar 

  2. Ekman, P. An argument for basic emotions. Cogn. Emot. 6, 169–200 (1992).

    Article  Google Scholar 

  3. Wilson-Mendenhall, C. D., Barrett, L. F., Simmons, W. K. & Barsalou, L. W. Grounding emotion in situated conceptualization. Neuropsychologia 49, 1105–1127 (2011).

    Article  PubMed  Google Scholar 

  4. Simmons, J. P., Nelson, L. D. & Simonsohn, U. False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychol. Sci. 22, 1359–1366 (2011).

    Article  PubMed  Google Scholar 

  5. Ioannidis, J. P. Why most published research findings are false. PLoS Med. 2, e124 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Eickhoff, S. B. et al. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum. Brain Mapp. 30, 2907–2926 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bressler, S. L. & Menon, V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn. Sci. 14, 277–290 (2010).

    Article  PubMed  Google Scholar 

  9. Darby, R. R., Joutsa, J. & Fox, M. D. Network localization of heterogeneous neuroimaging findings. Brain 142, 70–79 (2019).

    Article  PubMed  Google Scholar 

  10. Boes, A. D. et al. Network localization of neurological symptoms from focal brain lesions. Brain 138, 3061–3075 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fasano, A., Laganiere, S. E., Lam, S. & Fox, M. D. Lesions causing freezing of gait localize to a cerebellar functional network. Ann. Neurol. 81, 129–141 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Laganiere, S., Boes, A. D. & Fox, M. D. Network localization of hemichorea-hemiballismus. Neurology 86, 2187–2195 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Albazron, F. M. et al. Pediatric postoperative cerebellar cognitive affective syndrome follows outflow pathway lesions. Neurology 93, e1561–e1571 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Klingbeil, J., Wawrzyniak, M., Stockert, A., Karnath, H. O. & Saur, D. Hippocampal diaschisis contributes to anosognosia for hemiplegia: evidence from lesion network-symptom-mapping. NeuroImage 208, 116485 (2020).

    Article  PubMed  Google Scholar 

  15. Lee, I. et al. Diverse pathophysiological processes converge on network disruption in mania. J. Affect. Disord. 244, 115–123 (2019).

    Article  PubMed  Google Scholar 

  16. Sutterer, M. J. et al. Canceled connections: lesion-derived network mapping helps explain differences in performance on a complex decision-making task. Cortex 78, 31–43 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lim, J. S. et al. Individual-level lesion-network mapping to visualize the effects of a stroke lesion on the brain network: connectograms in stroke syndromes. J. Clin. Neurol. 16, 116–123 (2020).

    Article  PubMed  Google Scholar 

  18. Philippi, C. L. et al. Lesion network mapping demonstrates that mind-wandering is associated with the default mode network. J. Neurosci. Res. 99, 361–373 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Wawrzyniak, M., Klingbeil, J., Zeller, D., Saur, D. & Classen, J. The neuronal network involved in self-attribution of an artificial hand: a lesion network-symptom-mapping study. NeuroImage 166, 317–324 (2018).

    Article  PubMed  Google Scholar 

  20. Mithani, K. et al. Lesion network localization of seizure freedom following MR-guided laser interstitial thermal ablation. Sci. Rep. 9, 18598 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tetreault, A. M. et al. Network localization of clinical, cognitive, and neuropsychiatric symptoms in Alzheimer’s disease. Brain 143, 1249–1260 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Siddiqi, S. H. et al. Distinct symptom-specific treatment targets for circuit-based neuromodulation. Am. J. Psychiatry 177, 435–446 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cole, M. W., Ito, T., Bassett, D. S. & Schultz, D. H. Activity flow over resting-state networks shapes cognitive task activations. Nat. Neurosci. 19, 1718–1726 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tavor, I. et al. Task-free MRI predicts individual differences in brain activity during task performance. Science 352, 216–220 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S. & Petersen, S. E. Intrinsic and task-evoked network architectures of the human brain. Neuron 83, 238–251 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smith, S. M. et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl Acad. Sci. USA 106, 13040–13045 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu, P., Opmeer, E. M., van Tol, M. J., Goerlich, K. S. & Aleman, A. Structure of the alexithymic brain: a parametric coordinate-based meta-analysis. Neurosci. Biobehav. Rev. 87, 50–55 (2018).

    Article  PubMed  Google Scholar 

  28. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  Google Scholar 

  29. Fox, M. D. Mapping symptoms to brain networks with the human connectome. N. Engl. J. Med. 379, 2237–2245 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Weil, R. S., Hsu, J. K., Darby, R. R., Soussand, L. & Fox, M. D. Neuroimaging in Parkinson’s disease dementia: connecting the dots. Brain Commun. 1, fcz006 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Button, K. S. et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Lieberman, M. D. & Cunningham, W. A. Type I and type II error concerns in fMRI research: re-balancing the scale. Soc. Cogn. Affect. Neurosci. 4, 423–428 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Poldrack, R. A. et al. Scanning the horizon: towards transparent and reproducible neuroimaging research. Nat. Rev. Neurosci. 18, 115–126 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sterne, J. A. & Davey Smith, G. Sifting the evidence-what’s wrong with significance tests? Br. Med. J. 322, 226–231 (2001).

    Article  CAS  Google Scholar 

  35. Sperber, C. & Dadashi, A. The influence of sample size and arbitrary statistical thresholds in lesion-network mapping. Brain 143, e40 (2020).

    Article  PubMed  Google Scholar 

  36. Darby, R. R., Horn, A., Cushman, F. & Fox, M. D. Lesion network localization of criminal behavior. Proc. Natl Acad. Sci. USA 115, 601–606 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Pessoa, L. Reprint of: emotion and cognition and the amygdala: from ‘what is it?’ to ‘what’s to be done?’. Neuropsychologia 49, 681–694 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Craig, A. D. How do you feel–now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10, 59–70 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Ochsner, K. N. et al. For better or for worse: neural systems supporting the cognitive down- and up-regulation of negative emotion. NeuroImage 23, 483–499 (2004).

    Article  PubMed  Google Scholar 

  40. Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E. & Barrett, L. F. The brain basis of emotion: a meta-analytic review. Behav. Brain Sci. 35, 121–143 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kragel, P. A., Reddan, M. C., LaBar, K. S. & Wager, T. D. Emotion schemas are embedded in the human visual system. Sci. Adv. 5, eaaw4358 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Duvernoy, H. The Human Brain: Surface, Blood Supply, and Three-Dimensional Anatomy (Springer Verlag, 1999).

    Book  Google Scholar 

  43. Damasio, A. R., Tranel, D. & Damasio, H. Face agnosia and the neural substrates of memory. Annu. Rev. Neurosci. 13, 89–109 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Saxe, R. & Powell, L. J. It’s the thought that counts: specific brain regions for one component of theory of mind. Psychol. Sci. 17, 692–699 (2006).

    Article  PubMed  Google Scholar 

  45. Olson, I. R., Plotzker, A. & Ezzyat, Y. The enigmatic temporal pole: a review of findings on social and emotional processing. Brain 130, 1718–1731 (2007).

    Article  PubMed  Google Scholar 

  46. Vytal, K. & Hamann, S. Neuroimaging support for discrete neural correlates of basic emotions: a voxel-based meta-analysis. J. Cogn. Neurosci. 22, 2864–2885 (2010).

    Article  PubMed  Google Scholar 

  47. Kober, H. et al. Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of neuroimaging studies. NeuroImage 42, 998–1031 (2008).

    Article  PubMed  Google Scholar 

  48. Kragel, P. A. & LaBar, K. S. Decoding the nature of emotion in the brain. Trends Cogn. Sci. 20, 444–455 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pessoa, L. Understanding emotion with brain networks. Curr. Opin. Behav. Sci. 19, 19–25 (2018).

    Article  PubMed  Google Scholar 

  50. Pessoa, L. Understanding brain networks and brain organization. Phys. Life Rev. 11, 400–435 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Roy, M., Shohamy, D. & Wager, T. D. Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends Cogn. Sci. 16, 147–156 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yeshurun, Y., Nguyen, M. & Hasson, U. The default mode network: where the idiosyncratic self meets the shared social world. Nat. Rev. Neurosci. 22, 181–192 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kurth, F., Zilles, K., Fox, P. T., Laird, A. R. & Eickhoff, S. B. A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct. Funct. 214, 519–534 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nieuwenhuys, R. The insular cortex: a review. Prog. Brain Res 195, 123–163 (2012).

    Article  PubMed  Google Scholar 

  55. Augustine, J. R. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res. Brain Res. Rev. 22, 229–244 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Adolphs, R., Tranel, D., Damasio, H. & Damasio, A. Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372, 669–672 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Adolphs, R. Social attention and the ventromedial prefrontal cortex. Brain 137, 1572–1574 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Boucher, O. et al. Social information processing following resection of the insular cortex. Neuropsychologia 71, 1–10 (2015).

    Article  PubMed  Google Scholar 

  59. Honey, C. J., Thivierge, J. P. & Sporns, O. Can structure predict function in the human brain? NeuroImage 52, 766–776 (2010).

    Article  PubMed  Google Scholar 

  60. Joliot, M. et al. AICHA: an atlas of intrinsic connectivity of homotopic areas. J. Neurosci. Methods 254, 46–59 (2015).

    Article  PubMed  Google Scholar 

  61. Sehatpour, P. et al. A human intracranial study of long-range oscillatory coherence across a frontal-occipital-hippocampal brain network during visual object processing. Proc. Natl Acad. Sci. USA 105, 4399–4404 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sestieri, C., Corbetta, M., Romani, G. L. & Shulman, G. L. Episodic memory retrieval, parietal cortex, and the default mode network: functional and topographic analyses. J. Neurosci. 31, 4407–4420 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fedorenko, E. & Thompson-Schill, S. L. Reworking the language network. Trends Cogn. Sci. 18, 120–126 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ptak, R. The frontoparietal attention network of the human brain: action, saliency, and a priority map of the environment. Neuroscientist 18, 502–515 (2012).

    Article  PubMed  Google Scholar 

  65. Lee, K. H., Farrow, T. F., Spence, S. A. & Woodruff, P. W. Social cognition, brain networks and schizophrenia. Psychol. Med. 34, 391–400 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F. & Fox, P. T. Activation likelihood estimation meta-analysis revisited. NeuroImage 59, 2349–2361 (2012).

    Article  PubMed  Google Scholar 

  67. Lancaster, J. L. et al. Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Hum. Brain Mapp. 28, 1194–1205 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Van Essen, D. C. et al. The WU-Minn human connectome project: an overview. NeuroImage 80, 62–79 (2013).

    Article  PubMed  Google Scholar 

  69. Karnath, H. O., Sperber, C. & Rorden, C. Mapping human brain lesions and their functional consequences. NeuroImage 165, 180–189 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Niazy, R. K., Xie, J., Miller, K., Beckmann, C. F. & Smith, S. M. Spectral characteristics of resting state networks. Prog. Brain Res 193, 259–276 (2011).

    Article  PubMed  Google Scholar 

  71. Sala-Llonch, R., Smith, S. M., Woolrich, M. & Duff, E. P. Spatial parcellations, spectral filtering, and connectivity measures in fMRI: optimizing for discrimination. Hum. Brain Mapp. 40, 407–419 (2019).

    Article  PubMed  Google Scholar 

  72. Holmes, A. J. et al. Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures. Sci. Data 2, 150031 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Laird, A. R. et al. Networks of task co-activations. NeuroImage 80, 505–514 (2013).

    Article  PubMed  Google Scholar 

  74. Vuilleumier, P., Richardson, M. P., Armony, J. L., Driver, J. & Dolan, R. J. Distant influences of amygdala lesion on visual cortical activation during emotional face processing. Nat. Neurosci. 7, 1271–1278 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Wolf, R. C., Philippi, C. L., Motzkin, J. C., Baskaya, M. K. & Koenigs, M. Ventromedial prefrontal cortex mediates visual attention during facial emotion recognition. Brain 137, 1772–1780 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Barbey, A. K., Koenigs, M. & Grafman, J. Dorsolateral prefrontal contributions to human working memory. Cortex 49, 1195–1205 (2013).

    Article  PubMed  Google Scholar 

  77. Müller, N. G., Machado, L. & Knight, R. T. Contributions of subregions of the prefrontal cortex to working memory: evidence from brain lesions in humans. J. Cogn. Neurosci. 14, 673–686 (2002).

    Article  PubMed  Google Scholar 

  78. Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15, 273–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Zhou, H. X. et al. Rumination and the default mode network: meta-analysis of brain imaging studies and implications for depression. NeuroImage 206, 116287 (2020).

    Article  PubMed  Google Scholar 

  80. Hamilton, J. P., Farmer, M., Fogelman, P. & Gotlib, I. H. Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience. Biol. Psychiatry 78, 224–230 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 82172016 and 82021004 to G.G.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank M.D. Fox for valuable comments on this paper.

Author information

Authors and Affiliations

Authors

Contributions

S.P. and G.G. conceived the analysis. S.P. designed the study. S.P. collected the data and performed the analyses. Y.J. preprocessed the HCP and GSP datasets. S.P. wrote the manuscript. S.P., G.G. and P.X. reviewed and edited the manuscript.

Corresponding author

Correspondence to Gaolang Gong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Nils Kohn, Alexander Cohen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Methods 1–6, Figs. 1–15, Tables 1–5 and references.

Reporting summary

Peer Review File

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, S., Xu, P., Jiang, Y. et al. Activation network mapping for integration of heterogeneous fMRI findings. Nat Hum Behav 6, 1417–1429 (2022). https://doi.org/10.1038/s41562-022-01371-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-022-01371-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing