Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid neural reorganization during retrieval practice predicts subsequent long-term retention and false memory

Abstract

Active retrieval can alter the strength and content of a memory, yielding either enhanced or distorted subsequent recall. However, how consolidation influences these retrieval-induced seemingly contradictory outcomes remains unknown. Here we show that rapid neural reorganization over an eight-run retrieval practice predicted subsequent recall. Retrieval practice boosted memory retention following a 24-hour (long-term) but not 30-minute delay, and increased false memory at both delays. Long-term retention gains were predicted by multi-voxel representation distinctiveness in the posterior parietal cortex (PPC) that increased progressively over retrieval practice. False memory was predicted by unstable representation distinctiveness in the medial temporal lobe (MTL). Retrieval practice enhanced the efficiency of memory-related brain networks, through building up PPC and MTL connections with the ventrolateral and dorsolateral prefrontal cortex that predicted long-term retention gains and false memory, respectively. Our findings indicate that retrieval-induced rapid neural reorganization together with consecutive consolidation fosters long-term retention and false memories via distinct pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental design and memory differences on RP and NR at two tests.
Fig. 2: Dynamic changes in memory- related multi-voxel patterns over retrieval practice.
Fig. 3: Dynamic changes in intertrial neural pattern distinctiveness in the PPC, MTL and PFC systems and their relation to subsequent memory outcomes.
Fig. 4: Dynamic changes in memory-related neural network configurations over retrieval practice.
Fig. 5: Brain network-based prediction of long-term retention gains after consolidation and network reconfiguration over retrieval practice.
Fig. 6: MTL-based network prediction of general false memory outcome.

Similar content being viewed by others

Data availability

All of the necessary behavioural and brain imaging data are available from https://github.com/QinBrainLab/2017_RetrievalPractice. Source data are provided with this paper.

Code availability

All of the necessary behavioural and brain imaging codes are available from https://github.com/QinBrainLab/2017_RetrievalPractice.

References

  1. Karpicke, J. D. & Roediger, H. L. 3rd The critical importance of retrieval for learning. Science 319, 966–968 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Racsmany, M., Conway, M. A. & Demeter, G. Consolidation of episodic memories during sleep: long-term effects of retrieval practice. Psychological Sci. 21, 80–85 (2010).

    Article  Google Scholar 

  3. Roediger, H. L. 3rd & Butler, A. C. The critical role of retrieval practice in long-term retention. Trends Cogn. Sci. 15, 20–27 (2011).

    Article  PubMed  Google Scholar 

  4. Pastotter, B. & Bauml, K. T. Testing enhances subsequent learning in older adults. Psychol. Aging 34, 242–250 (2019).

    Article  PubMed  Google Scholar 

  5. Gershman, S. J., Monfils, M. H., Norman, K. A. & Niv, Y. The computational nature of memory modification. eLife 6, e23763 (2017).

  6. Nadel, L. & Land, C. Memory traces revisited. Nat. Rev. Neurosci. 1, 209–212 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Roediger, H. L. III., Jacoby, J. D. & McDermott, K. B. Misinformation effects in recall: creating false memories through repeated retrieval. J. Mem. Lang. 35, 300–318 (1996).

    Article  Google Scholar 

  8. van den Broek, G. et al. Neurocognitive mechanisms of the ‘testing effect’: a review. Trends Neurosci. Educ. 5, 52–66 (2016).

    Article  Google Scholar 

  9. Carpenter, S. K. & DeLosh, E. L. Impoverished cue support enhances subsequent retention: support for the elaborative retrieval explanation of the testing effect. Mem. Cognition 34, 268–276 (2006).

    Article  Google Scholar 

  10. Carpenter, S. K. Cue strength as a moderator of the testing effect: the benefits of elaborative retrieval. J. Exp. Psychol.: Learn., Mem., Cognition 35, 1563–1569 (2009).

    Google Scholar 

  11. Kornell, N., Bjork, R. A. & Garcia, M. A. Why tests appear to prevent forgetting: a distribution-based bifurcation model. J. Mem. Lang. 65, 85–97 (2011).

    Article  Google Scholar 

  12. Karpicke, J. D., Lehman, M. & Aue, W. R. in Psychology of Learning and Motivation Vol. 61 (ed. Ross, B. H.) Ch. 7, 237–284 (Academic Press, 2014).

  13. Antony, J. W., Ferreira, C. S., Norman, K. A. & Wimber, M. Retrieval as a fast route to memory consolidation. Trends Cogn. Sci. 21, 573–576 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wimber, M., Alink, A., Charest, I., Kriegeskorte, N. & Anderson, M. C. Retrieval induces adaptive forgetting of competing memories via cortical pattern suppression. Nat. Neurosci. 18, 582–589 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hulbert, J. C. & Norman, K. A. Neural differentiation tracks improved recall of competing memories following interleaved study and retrieval practice. Cereb. Cortex 25, 3994–4008 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Ye, Z., Shi, L., Li, A., Chen, C. & Xue, G. Retrieval practice facilitates memory updating by enhancing and differentiating medial prefrontal cortex representations. eLife 9, 57023 (2020).

    Article  Google Scholar 

  17. McDaniel, M. A. & Masson, M. E. Altering memory representations through retrieval. J. Exp. Psychol.: Learn., Mem., Cognition 11, 371–385 (1985).

    Google Scholar 

  18. Yassa, M. A. & Reagh, Z. M. Competitive trace theory: a role for the hippocampus in contextual interference during retrieval. Front. Behav. Neurosci. 7, 107 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Epp, J. R., Silva Mera, R., Kohler, S., Josselyn, S. A. & Frankland, P. W. Neurogenesis-mediated forgetting minimizes proactive interference. Nat. Commun. 7, 10838 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tonegawa, S., Morrissey, M. D. & Kitamura, T. The role of engram cells in the systems consolidation of memory. Nat. Rev. Neurosci. 19, 485–498 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Brodt, S. et al. Fast track to the neocortex: a memory engram in the posterior parietal cortex. Science 362, 1045 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Ferreira, C. S., Charest, I. & Wimber, M. Retrieval aids the creation of a generalised memory trace and strengthens episode-unique information. NeuroImage 201, 115996 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Himmer, L., Schönauer, M., Heib, D. P. J., Schabus, M. & Gais, S. Rehearsal initiates systems memory consolidation, sleep makes it last. Sci. Adv. 5, eaav1695 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Diekelmann, S., Born, J. & Wagner, U. Sleep enhances false memories depending on general memory performance. Behavioural Brain Res. 208, 425–429 (2010).

    Article  Google Scholar 

  25. Pardilla-Delgado, E. & Payne, J. D. The impact of sleep on true and false memory across long delays. Neurobiol. Learn. Mem. 137, 123–133 (2017).

    Article  PubMed  Google Scholar 

  26. Lo, J. C., Chong, P. L. H., Ganesan, S., Leong, R. L. F. & Chee, M. W. L. Sleep deprivation increases formation of false memory. J. Sleep. Res. 25, 673–682 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kuhl, B. A., Dudukovic, N. M., Kahn, I. & Wagner, A. D. Decreased demands on cognitive control reveal the neural processing benefits of forgetting. Nat. Neurosci. 10, 908–914 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Hutchinson, J. B., Uncapher, M. R. & Wagner, A. D. Posterior parietal cortex and episodic retrieval: convergent and divergent effects of attention and memory. Learn Mem. 16, 343–356 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Johnson, M. K., Raye, C. L., Mitchell, K. J. & Ankudowich, E. The cognitive neuroscience of true and false memories. Neb. Symp. Motiv. Neb. Symp. Motiv. 58, 15–52 (2012).

    Google Scholar 

  30. Kriegeskorte, N. & Kievit, R. A. Representational geometry: integrating cognition, computation, and the brain. Trends Cogn. Sci. 17, 401–412 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kuhl, B. A., Shah, A. T., DuBrow, S. & Wagner, A. D. Resistance to forgetting associated with hippocampus-mediated reactivation during new learning. Nat. Neurosci. 13, 501–506 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chapados, C. & Petrides, M. Ventrolateral and dorsomedial frontal cortex lesions impair mnemonic context retrieval. Proc. R. Soc. B: Biol. Sci. 282, 20142555 (2015).

    Article  Google Scholar 

  33. Jiang, J., Wang, S.-F., Guo, W., Fernandez, C. & Wagner, A. D. Prefrontal reinstatement of contextual task demand is predicted by separable hippocampal patterns. Nat. Commun. 11, 2053 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kluen, L. M., Dandolo, L. C., Jocham, G. & Schwabe, L. Dorsolateral prefrontal cortex enables updating of established memories. Cereb. Cortex 29, 4154–4168 (2019).

    Article  PubMed  Google Scholar 

  35. Ranganath, C. et al. Dissociable correlates of recollection and familiarity within the medial temporal lobes. Neuropsychologia 42, 2–13 (2004).

    Article  PubMed  Google Scholar 

  36. Wagner, A. D., Shannon, B. J., Kahn, I. & Buckner, R. L. Parietal lobe contributions to episodic memory retrieval. Trends Cogn. Sci. 9, 445–453 (2005).

    Article  PubMed  Google Scholar 

  37. Bassett, D. S., Yang, M., Wymbs, N. F. & Grafton, S. T. Learning-induced autonomy of sensorimotor systems. Nat. Neurosci. 18, 744–751 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dresler, M. et al. Mnemonic training reshapes brain networks to support superior memory. Neuron 93, 1227–1235 e1226 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52, 1059–1069 (2010).

    Article  PubMed  Google Scholar 

  40. Sestieri, C., Shulman, G. L. & Corbetta, M. The contribution of the human posterior parietal cortex to episodic memory. Nat. Rev. Neurosci. 18, 183–192 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karlsson Wirebring, L. et al. Lesser neural pattern similarity across repeated tests is associated with better long-term memory retention. J. Neurosci. 35, 9595 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sahay, A., Wilson, D. A. & Hen, R. Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron 70, 582–588 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Colgin, L. L., Moser, E. I. & Moser, M.-B. Understanding memory through hippocampal remapping. Trends Neurosci. 31, 469–477 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Tanimizu, T. et al. Functional connectivity of multiple brain regions required for the consolidation of social recognition memory. J. Neurosci.: Off. J. Soc. Neurosci. 37, 4103–4116 (2017).

    Article  CAS  Google Scholar 

  45. Freeman, L. C. A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977).

    Article  Google Scholar 

  46. Lesburguères, E. et al. Early tagging of cortical networks is required for the formation of enduring associative memory. Science 331, 924 (2011).

    Article  PubMed  Google Scholar 

  47. McDermott, K. B. Paradoxical effects of testing: repeated retrieval attempts enhance the likelihood of later accurate and false recall. Mem. Cognition 34, 261–267 (2006).

    Article  Google Scholar 

  48. Loftus, E. F. Planting misinformation in the human mind: a 30-year investigation of the malleability of memory. Learn Mem. 12, 361–366 (2005).

    Article  PubMed  Google Scholar 

  49. Qin, S., Hermans, E. J., van Marle, H. J. F. & Fernández, G. Understanding low reliability of memories for neutral information encoded under stress: alterations in memory-related activation in the hippocampus and midbrain. J. Neurosci. 32, 4032 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhu, B. et al. Multiple interactive memory representations underlie the induction of false memory. Proc. Natl Acad. Sci. USA 116, 3466 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chadwick, M. J. et al. Semantic representations in the temporal pole predict false memories. Proc. Natl Acad. Sci. USA 113, 10180–10185 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jou, J. & Foreman, J. Transfer of learning in avoiding false memory: the roles of warning, immediate feedback, and incentive. Q. J. Exp. Psychol. 60, 877–896 (2007).

    Article  Google Scholar 

  53. McConnell, M. D. & Reed Hunt, R. Can false memories be corrected by feedback in the DRM paradigm? Mem. Cognition 35, 999–1006 (2007).

    Article  Google Scholar 

  54. Schacter, D. L. & Slotnick, S. D. The cognitive neuroscience of memory distortion. Neuron 44, 149–160 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Jeong, W., Chung, C. K. & Kim, J. S. Episodic memory in aspects of large-scale brain networks. Front. Hum. Neurosci. 9, 454 (2015).

  56. Diekelmann, S. & Born, J. The memory function of sleep. Nat. Rev. Neurosci. 11, 114–126 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychological Rev. 102, 419–457 (1995).

    Article  Google Scholar 

  58. Wimber, M., Rutschmann, R. M., Greenlee, M. W. & Bäuml, K.-M. Retrieval from episodic memory: Neural mechanisms of interference resolution. J. Cogn. Neurosci. 21, 538–549 (2009).

    Article  PubMed  Google Scholar 

  59. Schacter, D. L., Addis, D. R. & Buckner, R. L. Remembering the past to imagine the future: the prospective brain. Nat. Rev. Neurosci. 8, 657–661 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Moscovitch, M., Cabeza, R., Winocur, G. & Nadel, L. Episodic memory and beyond: the hippocampus and neocortex in transformation. Annu. Rev. Psychol. 67, 105–10 (2016). Vol 67.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Liu, Y. et al. Memory consolidation reconfigures neural pathways involved in the suppression of emotional memories. Nat. Commun. 7, 13375 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Anderson, M. C. et al. Neural systems underlying the suppression of unwanted memories. Science 303, 232–235 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Stickgold, R. & Walker, M. P. Sleep-dependent memory triage: evolving generalization through selective processing. Nat. Neurosci. 16, 139–145 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Qin, S. et al. Probing the transformation of discontinuous associations into episodic memory: an event-related fMRI study. NeuroImage 38, 212–222 (2007).

    Article  PubMed  Google Scholar 

  65. McLaren, D. G., Ries, M. L., Xu, G. & Johnson, S. C. A generalized form of context-dependent psychophysiological interactions (gPPI): A comparison to standard approaches. NeuroImage. 61, 1277–1286 (2012).

    Article  PubMed  Google Scholar 

  66. Dosenbach, N. U. et al. Prediction of individual brain maturity using fMRI. Science 329, 1358–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dai, Z. et al. Discriminative analysis of early Alzheimer’s disease using multi-modal imaging and multi-level characterization with multi-classifier (M3). NeuroImage 59, 2187–2195 (2012).

    Article  PubMed  Google Scholar 

  68. Zeng, L.-L. et al. Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain 135, 1498–1507 (2012).

    Article  PubMed  Google Scholar 

  69. Kohoutová, L. et al. Toward a unified framework for interpreting machine-learning models in neuroimaging. Nat. Protoc. 15, 1399–1435 (2020).

    Article  PubMed  Google Scholar 

  70. Steiger, J. H. Beyond the F test: effect size confidence intervals and tests of close fit in the analysis of variance and contrast analysis. Psych. Methods 9, 164–182 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 32130045, 31522028, 81571056 and 82021004), the Open Research Fund of the State Key Laboratory of Cognitive Neuroscience and Learning (grant no. CNLZD1503), the Major Project of National Social Science Foundation (grant nos. 19ZDA363 and 20&ZD153) and the Fundamental Research Funds for the Central Universities. J.W. was supported by the International Postdoc Exchange Program in China, and the Special fund (grant no. 2018T110060) from China Postdoctoral Science Foundation Grant. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank Y. Liu and W. Lin for their assistance in conducting the experiment and data collection, and we thank Z. Cui for his advice on data analysis. We also thank F.D. Weber for his valuable comments for the paper.

Author information

Authors and Affiliations

Authors

Contributions

S.Q. conceived the experiment. B.X. performed data collection and analysis. L.Z. J.W., C.B. and L.H. performed data analysis. L.Z., J.W., P.J.B. and S.Q. wrote the paper. All authors contributed to data discussion and interpretation.

Corresponding author

Correspondence to Shaozheng Qin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Human Behaviour thanks Isabella Wagner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Results 1–7, Figs. 1–9 and Table 1.

Reporting Summary

Peer Review Information

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, L., Wang, J., Xiong, B. et al. Rapid neural reorganization during retrieval practice predicts subsequent long-term retention and false memory. Nat Hum Behav 6, 134–145 (2022). https://doi.org/10.1038/s41562-021-01188-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-021-01188-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing