Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Increased and biased deliberation in social anxiety

Abstract

A goal of computational psychiatry is to ground symptoms in basic mechanisms. Theory suggests that avoidance in anxiety disorders may reflect dysregulated mental simulation, a process for evaluating candidate actions. If so, these covert processes should have observable consequences: choices reflecting increased and biased deliberation. In two online general population samples, we examined how self-report symptoms of social anxiety disorder predict choices in a socially framed reinforcement learning task, the patent race, in which the pattern of choices reflects the content of deliberation. Using a computational model to assess learning strategy, we found that self-report social anxiety was indeed associated with increased deliberative evaluation. This effect was stronger for a particular subset of feedback (‘upward counterfactual’) in one of the experiments, broadly matching the biased content of rumination in social anxiety disorder, and robust to controlling for other psychiatric symptoms. These results suggest a grounding of symptoms of social anxiety disorder in more basic neuro-computational mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of patent race game.
Fig. 2: Distributions of scores.
Fig. 3: Change in EWA parameters as a function of LSAS and abbreviated nine-item Raven’s matrices.
Fig. 4: Change in EWA parameters as a function of LSAS and abbreviated nine-item Raven’s matrices.
Fig. 5: Per cent change in EWA parameters as a function of psychiatric symptom dimensions and Raven’s (abbreviated nine-item Raven’s matrices) for experiment 2 subjects (N = 331).

Similar content being viewed by others

Data availability

Processed data (per-participant estimated model parameters and covariates) supporting all of the statistical results of the study, and the raw choice data from which the model parameters were estimated, are available at https://github.com/ndawlab/patentrace. Raw psychometric data (questionnaire responses) are available from the corresponding authors upon request.

Code availability

Custom MATLAB code to reproduce all statistical results and tables is available at https://github.com/ndawlab/patentrace. Custom Julia code for estimating learning model parameters from raw choice data is available at https://github.com/ndawlab/em. Additional code (for figures and analyses of psychometric data) is available from the corresponding authors upon request.

References

  1. Maia, T. V. & Frank, M. J. From reinforcement learning models to psychiatric and neurological disorders. Nat. Neurosci. 14, 154–162 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huys, Q. J. M., Maia, T. V. & Frank, M. J. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat. Neurosci. 19, 404–413 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huys, Q. J. M. et al. Bonsai trees in your head: how the Pavlovian system sculpts goal-directed choices by pruning decision trees. PLoS Comput. Biol. 8, e1002410 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moutoussis, M., Eldar, E. & Dolan, R. J. Building a new field of computational psychiatry. Biol. Psychiatry 82, 388–390 (2017).

    Article  PubMed  Google Scholar 

  5. Montague, P. R., Dolan, R. J. & Friston, K. J. Computational psychiatry. Trends Cogn. Sci. 16, 72–80 (2012).

    Article  PubMed  Google Scholar 

  6. Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8, 1704–1711 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Johnson, A. & Redish, A. D. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J. Neurosci. 27, 12176–12189 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mattar, M. G. & Daw, N. D. Prioritized memory access explains planning and hippocampal replay. Nat. Neurosci. 21, 1609–1617 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P. & Dolan, R. J. Model-based influences on humans’ choices and striatal prediction errors. Neuron 69, 1204–15 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Otto, A. R., Gershman, S. J., Markman, A. B. & Daw, N. D. The curse of planning. Psychol. Sci. 24, 751–761 (2013).

    Article  PubMed  Google Scholar 

  12. Doll, B. B., Bath, K. G., Daw, N. D. & Frank, M. J. Variability in dopamine genes dissociates model-based and model-free reinforcement learning. J. Neurosci. 36, 1211–22 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Everitt, B. J. & Robbins, T. W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481–1489 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Gillan, C. M. et al. Disruption in the balance between goal-directed behavior and habit learning in obsessive–compulsive disorder. Am. J. Psychiatry 168, 718–726 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gillan, C. M. et al. Counterfactual processing of economic action–outcome alternatives in obsessive–compulsive disorder: further evidence of impaired goal-directed behavior. Biol. Psychiatry 75, 639–646 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gillan, C. M., Kosinski, M., Whelan, R., Phelps, E. A. & Daw, N. D. Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. eLife 5, e11305 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Reiter, A. M. F. et al. Behavioral and neural signatures of reduced updating of alternative options in alcohol-dependent patients during flexible decision-making. J. Neurosci. 36, 10935–10948 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Voon, V. et al. Disorders of compulsivity: a common bias towards learning habits. Mol. Psychiatry 20, 345–52 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Huys, Q. J. M., Daw, N. D. & Dayan, P. Depression: a decision-theoretic analysis. Annu. Rev. Neurosci. 38, 1–23 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Gagne, C., Dayan, P. & Bishop, S. J. When planning to survive goes wrong: predicting the future and replaying the past in anxiety and PTSD. Curr. Opin. Behav. Sci. 24, 89–95 (2018).

    Article  Google Scholar 

  21. Solway, A., Lohrenz, T. & Montague, P. R. Loss aversion correlates with the propensity to deploy model-based control. Front. Neurosci. 13, 915 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zorowitz, S., Momennejad, I. & Daw, N. D. Anxiety, avoidance, and sequential evaluation. Comput. Psychiatry 4, 1 (2020).

    Article  Google Scholar 

  23. Faulkner, P. et al. A comparison of “pruning” during multi-step planning in depressed and healthy individuals. Psychol. Med. https://doi.org/10.1017/S0033291721000799 (2021).

  24. Shapiro, D. N., Chandler, J. & Mueller, P. A. Using Mechanical Turk to study clinical populations. Clin. Psychol. Sci. 1, 213–220 (2013).

    Article  Google Scholar 

  25. Norton, A. R. & Abbott, M. J. Self-focused cognition in social anxiety: a review of the theoretical and empirical literature. Behav. Change 33, 44–64 (2015).

    Article  Google Scholar 

  26. Rapoport, A. & Amaldoss, W. Mixed strategies and iterative elimination of strongly dominated strategies: an experimental investigation of states of knowledge. J. Econ. Behav. Organ. 42, 483–521 (2000).

    Article  Google Scholar 

  27. Zhu, L., Mathewson, K. E. & Hsu, M. Dissociable neural representations of reinforcement and belief prediction errors underlie strategic learning. Proc. Natl Acad. Sci. USA 109, 1419–1424 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Set, E. et al. Dissociable contribution of prefrontal and striatal dopaminergic genes to learning in economic games. Proc. Natl Acad. Sci. USA 111, 9615–9620 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Camerer, C. & Ho, T. H. Experience-weighted attraction learning in normal form games. Econometrica 67, 827–874 (1999).

    Article  Google Scholar 

  30. Cushman, F. & Morris, A. Habitual control of goal selection in humans. Proc. Natl Acad. Sci. USA 112, 13817–13822 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu, Y., Mattar, M. G., Behrens, T. E. J., Daw, N. D. & Dolan, R. J. Experience replay is associated with efficient nonlocal learning. Science 372, eabf1357 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kocovski, N. L., Fleming, J. E., Hawley, L. L., Ho, M. H. R. & Antony, M. M. Mindfulness and acceptance-based group therapy and traditional cognitive behavioral group therapy for social anxiety disorder: mechanisms of change. Behav. Res. Ther. 70, 11–22 (2015).

    Article  PubMed  Google Scholar 

  33. Kocovski, N. L., Endler, N. S., Rector, N. A. & Flett, G. L. Ruminative coping and post-event processing in social anxiety. Behav. Res. Ther. 43, 971–984 (2005).

    Article  PubMed  Google Scholar 

  34. Crump, M. J. C., McDonnell, J. V. & Gureckis, T. M. Evaluating Amazon’s Mechanical Turk as a tool for experimental behavioral research. PLoS ONE 8, e57410 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liebowitz, M. R. Social phobia. Mod. Probl. Pharmacopsychiatry 22, 141–73 (1987).

    Article  CAS  PubMed  Google Scholar 

  36. Mennin, D. S. et al. Screening for social anxiety disorder in the clinical setting: using the Liebowitz Social Anxiety Scale. J. Anxiety Disord. 16, 661–673 (2002).

    Article  PubMed  Google Scholar 

  37. Bilker, W. B. et al. Development of abbreviated nine-item forms of the Raven’s standard progressive matrices test. Assessment 19, 354–69 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brozovich, F. & Heimberg, R. G. An analysis of post-event processing in social anxiety disorder. Clin. Psychol. Rev. 28, 891–903 (2008).

    Article  PubMed  Google Scholar 

  39. Beck, A. T., Emery, G. & Greenberg, R. L. Anxiety disorders and phobias: a cognitive approach (Basic, 1985).

  40. Clark, D. A. & Wells, A. in Social Phobia: Diagnosis, Assessment, and Treatment (eds Heimberg, R. G. et al.) (Guildford Press, 1995).

  41. Hofmann, S. G., Carpenter, J. K. & Curtiss, J. in Science and Practice in Cognitive Therapy: Foundations, Mechanisms, and Applications (eds Leahy, R. L. et al.) 124–141 (Routledge, 2018).

  42. Watkins, E. R. Constructive and unconstructive repetitive thought. Psychol. Bull. 134, 163–206 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Keramati, M., Smittenaar, P., Dolan, R. J. & Dayan, P. Adaptive integration of habits into depth-limited planning defines a habitual-goal-directed spectrum. Proc. Natl Acad. Sci. USA 113, 12868–12873 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Icard, T., Cushman, F. & Knobe, J. On the instrumental value of hypothetical and counterfactual thought. Proceedings of the 40th Annual Conference of the Cognitive Science Society 517–522 (2018).

  45. Caplin, A., Dean, M. & Leahy, J. Rationally Inattentive Behavior: Characterizing and Generalizing Shannon Entropy Working paper no. 23652 (NBER, 2017).

  46. Kahneman, D. & Miller, D. T. Norm theory. Comparing reality to its alternatives. Psychol. Rev. 93, 136–153 (1986).

    Article  Google Scholar 

  47. McCloy, R. & Byrne, R. M. J. Counterfactual thinking about controllable events. Mem. Cogn. 28, 1071–1078 (2000).

    Article  CAS  Google Scholar 

  48. Loomes, G. & Sugden, R. Regret theory: an alternative theory of rational choice under uncertainty. Econ. J. 92, 805 (1982).

    Article  Google Scholar 

  49. Raven, J. The Raven’s progressive matrices: change and stability over culture and time. Cogn. Psychol. 41, 1–48 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Zhu, L., Jiang, Y., Scabini, D., Knight, R. T. & Hsu, M. Patients with basal ganglia damage show preserved learning in an economic game. Nat. Commun. 10, 802 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Erev, I. & Roth, A. E. Predicting how people play games: reinforcement learning in experimental games with unique, mixed strategy equilibria. Am. Econ. Rev. 88, 848–881 (1998).

    Google Scholar 

  52. Cheung, Y. W. & Friedman, D. Individual learning in normal form games: some laboratory results. Games Econ. Behav. 19, 46–76 (1997).

    Article  Google Scholar 

  53. Brown, G. W. Iterative solution of games by fictitious play. Act. Anal. Prod. Allocation 13, 374–376 (1951).

    Google Scholar 

  54. Sutton, R. S. Dyna, an integrated architecture for learning, planning, and reacting. ACM SIGART Bull. 2, 160–163 (1991).

    Article  Google Scholar 

  55. Amaldoss, W. & Jain, S. David vs. Goliath: an analysis of asymmetric mixed-strategy games and experimental evidence. Manag. Sci. 48, 972–991 (2002).

    Article  Google Scholar 

  56. Vikbladh, O. M. et al. Hippocampal contributions to model-based planning and spatial memory. Neuron 102, 683–693.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Keramati, M., Dezfouli, A. & Piray, P. Speed/accuracy trade-off between the habitual and the goal-directed processes. PLoS Comput. Biol. 7, e1002055 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: a fresh approach to numerical computing. SIAM Rev. 59, 65–98 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Q. Huys, M. Paulus, M. Stein, A. Solway and S. Zorowitz for helpful conversations. This work was supported by NIMH grant R01MH121093, part of the CRNCS programme, and by a Scholar Award from the James S. McDonnell Foundation. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

L.E.H., E.A.M., C.M.G., M.H. and N.D.D. contributed to the conception and design of the experiment L.E.H. and E.A.M. collected the data. L.E.H., E.A.M. and N.D.D. analysed the data. L.E.H. and N.D.D. prepared the initial draft of the manuscript, and all authors edited the manuscript and gave final approval of revisions.

Corresponding authors

Correspondence to Lindsay E. Hunter or Nathaniel D. Daw.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Human Behaviour thanks Camilla Nord and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–10 and Figs. 1–5.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hunter, L.E., Meer, E.A., Gillan, C.M. et al. Increased and biased deliberation in social anxiety. Nat Hum Behav 6, 146–154 (2022). https://doi.org/10.1038/s41562-021-01180-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-021-01180-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing