Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

There is little evidence that spicy food in hot countries is an adaptation to reducing infection risk

Abstract

Spicier food in hot countries has been explained in terms of natural selection on human cultures, with spices with antimicrobial effects considered to be an adaptation to increased risk of foodborne infection. However, correlations between culture and environment are difficult to interpret, because many cultural traits are inherited together from shared ancestors, neighbouring cultures are exposed to similar conditions, and many cultural and environmental variables show strong covariation. Here, using a global dataset of 33,750 recipes from 70 cuisines containing 93 different spices, we demonstrate that variation in spice use is not explained by temperature and that spice use cannot be accounted for by diversity of cultures, plants, crops or naturally occurring spices. Patterns of spice use are not consistent with an infection-mitigation mechanism, but are part of a broader association between spice, health, and poverty. This study highlights the challenges inherent in interpreting patterns of human cultural variation in terms of evolutionary pressures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spice and temperature.
Fig. 2: Horrendogram of proposed links between spice use and infection risk.
Fig. 3: Spice and GDP.
Fig. 4: Spice and traffic accidents.
Fig. 5: Geographic sampling bias.

Similar content being viewed by others

Data availability

This study uses only previously published data and all published sources are given in the Methods and Supplementary Information (Table 1). All variables analysed are provided in Supplementary Tables 4 and 5.

Code availability

All code used is available by request.

References

  1. Sherman, P. W. & Billing, J. Darwinian gastronomy: why we use spices: spices taste good because they are good for us. BioScience 49, 453–463 (1999).

    Article  Google Scholar 

  2. Billing, J. & Sherman, P. W. Antimicrobial functions of spices: why some like it hot. Q. Rev. Biol. 73, 3–49 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Galton, F. Comment on ‘On a method of investigating the development of institutions; applied to laws of marriage and descent’ by E. B. Tylor. J. Anthropol. Inst. Gt Br. Irel. 18, 245–272 (1889).

    Google Scholar 

  4. Bromham, L., Hua, X., Cardillo, M., Schneemann, H. & Greenhill, S. J. Parasites and politics: why cross-cultural studies must control for relatedness, proximity and covariation. R. Soc. Open Sci. 5, 181100 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mace, R. & Holden, C. J. A phylogenetic approach to cultural evolution. Trends Ecol. Evol. 20, 116–121 (2005).

    Article  PubMed  Google Scholar 

  6. Freckleton, R. P. & Jetz, W. Space versus phylogeny: disentangling phylogenetic and spatial signals in comparative data. Proc. R. Soc. B 276, 21–30 (2008).

    Article  PubMed Central  Google Scholar 

  7. Hua, X., Greenhill, S. J., Cardillo, M., Schneemann, H. & Bromham, L. The ecological drivers of variation in global language diversity. Nat. Commun. 10, 2047 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ohtsubo, Y. Adaptive ingredients against food spoilage in Japanese cuisine. Int. J. Food Sci. Nutr. 60, 677–687 (2009).

    Article  PubMed  Google Scholar 

  9. Murray, D. R. & Schaller, M. Historical prevalence of infectious diseases within 230 geopolitical regions: a tool for investigating origins of culture. J. Cross Cult. Psychol. 41, 99–108 (2010).

    Article  Google Scholar 

  10. Sherman, P. W. & Hash, G. A. Why vegetable recipes are not very spicy. Evol. Hum. Behav. 22, 147–163 (2001).

    Article  PubMed  Google Scholar 

  11. Havelaar, A. H. et al. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med. 12, e1001923 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lewnard, J. A., Lo, N. C., Arinaminpathy, N., Frost, I. & Laxminarayan, R. Childhood vaccines and antibiotic use in low- and middle-income countries. Nature 581, 94–99 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McMichael, A. J. & Beaglehole, R. The changing global context of public health. Lancet 356, 495–499 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Salomon, J. A. et al. Healthy life expectancy for 187 countries, 1990–2010: a systematic analysis for the Global Burden Disease Study 2010. Lancet 380, 2144–2162 (2012).

    Article  PubMed  Google Scholar 

  15. Kummu, M. & Varis, O. The world by latitudes: a global analysis of human population, development level and environment across the north–south axis over the past half century. Appl. Geogr. 31, 495–507 (2011).

    Article  Google Scholar 

  16. Johnell, O., Borgstrom, F., Jonsson, B. & Kanis, J. Latitude, socioeconomic prosperity, mobile phones and hip fracture risk. Osteoporos. Int. 18, 333–337 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Kanis, J. A. et al. Variations in latitude may or may not explain the worldwide variation in hip fracture incidence. Osteoporos. Int. 23, 2401–2402 (2012).

    Article  Google Scholar 

  18. Fisman, D. et al. Geographical variability in the likelihood of bloodstream infections due to Gram-negative bacteria: correlation with proximity to the equator and health care expenditure. PLoS ONE 9, e114548 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Coccia, M. The effect of country wealth on incidence of breast cancer. Breast Cancer Res. Treat. 141, 225–229 (2013).

    Article  PubMed  Google Scholar 

  20. Buchter, B., Dunkel, M. & Li, J. Multiple sclerosis: a disease of affluence? Neuroepidemiology 39, 51–56 (2012).

    Article  PubMed  Google Scholar 

  21. Roberts, S. & Winters, J. Linguistic diversity and traffic accidents: Lessons from statistical studies of cultural traits. PLoS ONE 8, e70902 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guernier, V., Hochberg, M. E. & Guégan, J.-F. Ecology drives the worldwide distribution of human diseases. PLoS Biol. 2, e141 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).

    Article  Google Scholar 

  25. Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. USA 104, 5925–5930 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dunn, R. R., Davies, T. J., Harris, N. C. & Gavin, M. C. Global drivers of human pathogen richness and prevalence. Proc. R. Soc. B 277, 2587–2595 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Luck, G. W. A review of the relationships between human population density and biodiversity. Biol. Rev. 82, 607–645 (2007).

    Article  PubMed  Google Scholar 

  28. Collen, B. et al. Global patterns of freshwater species diversity, threat and endemism. Glob. Ecol. Biogeogr. 23, 40–51 (2014).

    Article  PubMed  Google Scholar 

  29. Just, M. G. et al. Global biogeographic regions in a human‐dominated world: the case of human diseases. Ecosphere 5, 1–21 (2014).

    Article  Google Scholar 

  30. Morand, S., Owers, K. & Bordes, F. in Confronting Emerging Zoonoses (eds Yamada, A. et al.) 27–41 (Springer, 2014).

  31. Turner, J. Spice: the History of a Temptation (Alfred A. Knopf, 2004).

  32. Kraft, K. H. et al. Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico. Proc. Natl Acad. Sci. USA 111, 6165–6170 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Portnoy, S. in The SAGE Encyclopedia of Food Issues Vol. 1 (ed. Albala, K.) 84–86 (SAGE Publications, 2015).

  34. Jain, A., Rakhi, N. & Bagler, G. Analysis of food pairing in regional cuisines of India. PLoS ONE 10, e0139539 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zhu, Y.-X. et al. Geography and similarity of regional cuisines in China. PLoS ONE 8, e79161 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kline, M. A., Shamsudheen, R. & Broesch, T. Variation is the universal: making cultural evolution work in developmental psychology. Philos. Trans. R. Soc. B 373, 20170059 (2018).

    Article  Google Scholar 

  37. Bagler, G. CulinaryDB (Indraprastha Institute of Information Technology Delhi, 2017); https://cosylab.iiitd.edu.in/culinarydb/

  38. Iranshahy, M. & Iranshahi, M. Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assa-foetida oleo-gum-resin)—a review. J. Ethnopharmacol. 134, 1–10 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Nakamura, Y. et al. Comparison of the glucosinolate–myrosinase systems among daikon (Raphanus sativus, Japanese white radish) varieties. J. Agric. Food Chem. 56, 2702–2707 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Gupta, S. & Abu-Ghannam, N. Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innov. Food Sci. Emerg. Technol. 12, 600–609 (2011).

    Article  CAS  Google Scholar 

  41. Devi, K. P., Suganthy, N., Kesika, P. & Pandian, S. K. Bioprotective properties of seaweeds: in vitro evaluation of antioxidant activity and antimicrobial activity against food borne bacteria in relation to polyphenolic content. BMC Complement. Altern. Med. 8, 1 (2008).

    Article  CAS  Google Scholar 

  42. Cox, S., Abu-Ghannam, N. & Gupta, S. An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. Int. Food Res. J. 17, 205–220 (2010).

    CAS  Google Scholar 

  43. Lipkin, A. et al. An antimicrobial peptide Ar-AMP from amaranth (Amaranthus retroflexus L.) seeds. Phytochemistry 66, 2426–2431 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Maiyo, Z., Ngure, R., Matasyoh, J. & Chepkorir, R. Phytochemical constituents and antimicrobial activity of leaf extracts of three Amaranthus plant species. Afr. J. Biotechnol. 9, 3178–3182 (2010).

    Google Scholar 

  45. Dan, S. Antibacterial activity of paeonol in vitro. Her. Med. 9, 009 (2012).

    Google Scholar 

  46. Uddin, G., Sadat, A. & Siddiqui, B. S. Phytochemical screening, in vitro antioxidant and antimicrobial activities of the crude fractions of Paeonia emodi Wall. Ex Royle. Middle East J. Sci. Res. 17, 367–373 (2013).

    Google Scholar 

  47. Joung, Y.-M. et al. Antioxidative and antimicrobial activities of lilium species extracts prepared from different aerial parts. Korean J. Food Sci. Technol. 39, 452–457 (2007).

    Google Scholar 

  48. He, J., Chen, L., Heber, D., Shi, W. & Lu, Q.-Y. Antibacterial compounds from Glycyrrhiza uralensis. J. Nat. Prod. 69, 121–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Dhingra, V., Pakki, S. R. & Narasu, M. L. Antimicrobial activity of artemisinin and its precursors. Curr. Sci. 78, 709–713 (2000).

    CAS  Google Scholar 

  50. Gupta, V. K. et al. Antimicrobial potential of Glycyrrhiza glabra roots. J. Ethnopharmacol. 116, 377–380 (2008).

    Article  PubMed  Google Scholar 

  51. Chen, C. et al. Chemical composition and antimicrobial and DPPH scavenging activity of essential oil of Toona sinensis (A. Juss.) Roem from China. BioResources 9, 5262–5278 (2014).

    Article  Google Scholar 

  52. Arzanlou, M. & Bohlooli, S. Introducing of green garlic plant as a new source of allicin. Food Chem. 120, 179–183 (2010).

    Article  CAS  Google Scholar 

  53. Shittu, L. et al. Antibacterial and antifungal activities of essential oils of crude extracts of Sesame radiatum against some common pathogenic micro-organisms. Iran. J. Pharmacol. Ther. 6, 165–170 (2008).

    Google Scholar 

  54. Medina, E., Romero, C., Brenes, M. & de Castro, A. Antimicrobial activity of olive oil, vinegar, and various beverages against foodborne pathogens. J. Food Prot. 70, 1194–1199 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. South, A. rworldmap: a new R package for mapping global data. R J. 3, 35–43 (2011).

    Article  Google Scholar 

  56. R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org/ (R Foundation for Statistical Computing, 2016).

  57. GADM Maps and Data (GADM, 2012); https://www.gadm.org

  58. Bivand, R. et al. rgeos: interface to geometry engine—open source (GEOS) v.0.3-21 https://cran.r-project.org/package=rgeos (2016).

  59. Bromham, L. Curiously the same: swapping tools between linguistics and evolutionary biology. Biol. Philos. 32, 855–886 (2017).

    Article  Google Scholar 

  60. Mace, R. & Pagel, M. The comparative method in anthropology. Curr. Anthropol. 35, 549–564 (1994).

    Article  Google Scholar 

  61. Harvey, P. H. & Pagel, M. The Comparative Method in Evolutionary Biology (Oxford Univ. Press, 1991).

  62. Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).

    Article  Google Scholar 

  63. Miller, M. A. & Paige, J. C. Other food borne infections. Vet. Clin. North Am. Food Anim. Pract. 14, 71–89 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Fisman, D. N. & Laupland, K. Guess who’s coming to dinner? Emerging foodborne zoonoses. Can. J. Infect. Dis. Med. Microbiol. 21, 8–10 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sookias, R. B., Passmore, S. & Atkinson, Q. D. Deep cultural ancestry and human development indicators across nation states. R. Soc. Open Sci. 5, 171411 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Johnson, P. C. D., Barry, S. J. E., Ferguson, H. M. & Muller, P. Power analysis for generalized linear mixed models in ecology and evolution. Methods Ecol. Evol. 6, 133–142 (2015).

    Article  PubMed  Google Scholar 

  67. O’Hagan, A. Kendall’s Advanced Theory Of Statistics Vol. 2B: Bayesian Inference (Halsted, 1994).

  68. Bonds, M. H., Keenan, D. C., Rohani, P. & Sachs, J. D. Poverty trap formed by the ecology of infectious diseases. Proc. R. Soc. B: 277, 1185–1192 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Y. Ohtsubo, Y. Zhu, H. Kreft and W. Jetz for providing data, and M. Cardillo for assistance and advice throughout the project. The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

A.S., H.S., L.B. and R.D. collected data, X.H. and A.S. analysed the data and L.B. wrote the paper. All authors designed the analysis, interpreted results and approved the manuscript.

Corresponding author

Correspondence to Lindell Bromham.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Human Behaviour thanks Ranier Gutierrez, Caitlyn Placek and Roland Sookias for their contribution to the peer review of this work. Primary Handling Editor: Charlotte Payne.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Results, Supplementary Tables 1 and 2 and Supplementary Fig. 1.

Reporting Summary

Peer Review Information

Supplementary Data 1

Details of all statistical tests conducted on all datasets.

Supplementary Data 2

Data analysed for this study (combined dataset).

Supplementary Data 3

Data analysed for this study (country-level dataset).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bromham, L., Skeels, A., Schneemann, H. et al. There is little evidence that spicy food in hot countries is an adaptation to reducing infection risk. Nat Hum Behav 5, 878–891 (2021). https://doi.org/10.1038/s41562-020-01039-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-020-01039-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing