Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sex continuum in the brain and body during adolescence and psychological traits

Abstract

Many traits of the brain and body show marked sex differences, but the distributions of their values overlap substantially between the two sexes. To investigate variations associated with biological sex, beyond binary differences, we create continuous sex scores capturing the inter-individual variability in phenotypes. In an adolescent cohort (n = 1,029; 533 females), we have generated three sex scores based on brain–body traits: ‘overall’ (48 traits), ‘pubertal’ (26 traits) and ‘non-pubertal’ (22 traits). We then conducted sex-stratified multiple linear regressions (adjusting for age) using sex scores to test associations with sex hormones, personality traits and internalizing–externalizing behaviour. Higher sex scores (that is, greater ‘femaleness’) were associated with lower testosterone in males only, as well as lower extraversion, higher internalizing and lower externalizing in both sexes. The associations with testosterone, internalizing and externalizing were driven by pubertal sex scores, underscoring the importance of adolescence in shaping within-sex individual variability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distributions of sex scores.
Fig. 2: Age-adjusted associations between testosterone and sex scores in males.

Similar content being viewed by others

Data availability

The data are available upon request, addressed to T.P. (tpausresearch@gmail.com) or Z.P. (zdenka.pausova@sickkids.ca).

Code availability

The R code used to compute the sex scores is provided as a supplementary attachment.

References

  1. Speijer, D., Lukeš, J. & Eliáš, M. Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. Proc. Natl Acad. Sci. USA 112, 8827–8834 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Servedio, M. R. & Boughman, J. W. The role of sexual selection in local adaptation and speciation. Annu. Rev. Ecol. Evol. Syst. 48, 85–109 (2017).

    Article  Google Scholar 

  3. Mesnick, S. & Ralls, K. Sexual dimorphism. in Encyclopedia of Marine Mammals 3rd edn (eds Würsig, B., Thewissen, J.G.M. & Kovacs, K. M.) 848–853 (Academic Press, 2018).

  4. Sztkely, T., Reynolds, J. D. & Figuerola, J. Sexual size dimorphism in shorebirds, gulls, and alcids: the influence of sexual and natural selection. Society 54, 1404–1413 (2009).

    Google Scholar 

  5. Paus, T., Wong, A. P. Y., Syme, C. & Pausova, Z. Sex differences in the adolescent brain and body: findings from the saguenay youth study. J. Neurosci. Res. 95, 362–370 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Clayton, J. A. & Tannenbaum, C. Reporting sex, gender, or both in clinical research? JAMA 316, 1863–1864 (2016).

    Article  PubMed  Google Scholar 

  7. Schulz, K. M., Molenda-Figueira, H. A. & Sisk, C. L. Back to the future: the organizational–activational hypothesis adapted to puberty and adolescence. Horm. Behav. 55, 597–604 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Perrin, J. S. et al. Growth of white matter in the adolescent brain: role of testosterone and androgen receptor. J. Neurosci. 28, 9519–9524 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pangelinan, M. M. et al. Puberty and testosterone shape the corticospinal tract during male adolescence. Brain Struct. Funct. 221, 1083–1094 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Nguyen, T. V. et al. Testosterone-related cortical maturation across childhood and adolescence. Cereb. Cortex 23, 1424–1432 (2013).

    Article  PubMed  Google Scholar 

  11. Agirbasli, M. et al. Sex hormones and metabolic syndrome in children and adolescents. Metabolism 58, 1256–1262 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Markova, D. et al. Age-and sex-related variations in vocal-tract morphology and voice acoustics during adolescence. Horm. Behav. 81, 84–96 (2016).

    Article  PubMed  Google Scholar 

  13. Arnold, A. P. A general theory of sexual differentiation. J. Neurosci. Res. 95, 291–300 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Verweij, K. J. H., Mosing, M. A., Ullén, F. & Madison, G. Individual differences in personality masculinity–femininity: examining the effects of genes, environment, and prenatal hormone transfer. Twin Res. Hum. Genet. 19, 87–96 (2016).

    Article  PubMed  Google Scholar 

  15. Kajonius, P. J. & Johnson, J. Sex differences in 30 facets of the five factor model of personality in the large public (N = 320,128). Pers. Individ. Dif. 129, 126–130 (2018).

    Article  Google Scholar 

  16. McCarthy, M. M. Multifaceted origins of sex differences in the brain. Philos. Trans. R. Soc. B 371, 20150106 (2016).

    Article  CAS  Google Scholar 

  17. Martel, M. M. Sexual selection and sex differences in the prevalence of childhood externalizing and adolescent internalizing disorders. Psychol. Bull. 139, 1221–1259 (2013).

    Article  PubMed  Google Scholar 

  18. Demmer, D. H., Hooley, M., Sheen, J., McGillivray, J. A. & Lum, J. A. G. Sex differences in the prevalence of oppositional defiant disorder during middle childhood: a meta-analysis. J. Abnorm. Child Psychol. 45, 313–325 (2017).

    Article  PubMed  Google Scholar 

  19. Eme, R. & Kavanaugh, L. Sex differences in conduct disorder. J. Clin. Child Psychol. 24, 406–426 (1995).

    Article  Google Scholar 

  20. Altemus, M., Sarvaiya, N. & Neill Epperson, C. Sex differences in anxiety and depression clinical perspectives. Front. Neuroendocrinol. 35, 320–330 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, 1–10 (2015).

    Article  Google Scholar 

  22. Boyd, A. et al. Cohort profile: the’Children of the 90s’—The index offspring of the Avon Longitudinal Study of Parents and Children. Int. J. Epidemiol. 42, 111–127 (2013).

    Article  PubMed  Google Scholar 

  23. Garavan, H. et al. Recruiting the ABCD sample: design considerations and procedures. Dev. Cogn. Neurosci. 32, 16–22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wong, A. P. Y. et al. Estimating volumes of the pituitary gland from T1-weighted magnetic-resonance images: effects of age, puberty, testosterone, and estradiol. Neuroimage 94, 216–221 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Lehre, A. C., Lehre, K. P., Laake, P. & Danbolt, N. C. Greater intrasex phenotype variability in males than in females is a fundamental aspect of the gender differences in humans. Dev. Psychobiol. 51, 198–206 (2009).

    Article  PubMed  Google Scholar 

  26. Wierenga, L. M. et al. Greater male than female variability in regional brain structure across the lifespan. Preprint at bioRxiv https://doi.org/10.1101/2020.02.17.952010 (2020).

  27. Reinhold, K. & Engqvist, L. The variability is in the sex chromosomes. Evolution (N. Y.) 67, 3662–3668 (2013).

    Google Scholar 

  28. Migeon, B. R. Why females are mosaics, x-chromosome inactivation, and sex differences in disease. Gend. Med. 4, 97–105 (2007).

    Article  PubMed  Google Scholar 

  29. Van Anders, S. M., Goldey, K. L. & Kuo, P. X. The steroid/peptide theory of social bonds: integrating testosterone and peptide responses for classifying social behavioral contexts. Psychoneuroendocrinology 36, 1265–1275 (2011).

    Article  PubMed  CAS  Google Scholar 

  30. Bancroft, J. Sexual effects of androgens in women: some theoretical considerations. Fertil. Steril. 77, 55–59 (2002).

    Article  Google Scholar 

  31. Geniole, S. N. et al. Is testosterone linked to human aggression? A meta-analytic examination of the relationship between baseline, dynamic, and manipulated testosterone on human aggression. Horm. Behav. 123, 104644 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Perel, E. & Killinger, D. W. The interconversion and aromatization of androgens by human adipose tissue. J. Steroid Biochem. 10, 623–627 (1979).

    Article  CAS  PubMed  Google Scholar 

  33. Berenbaum, S. A. & Beltz, A. M. Sexual differentiation of human behavior: effects of prenatal and pubertal organizational hormones. Front. Neuroendocrinol. 32, 183–200 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Sisk, C. L. & Zehr, J. L. Pubertal hormones organize the adolescent brain and behavior. Front. Neuroendocrinol. 26, 163–174 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Schulz, K. M. & Sisk, C. L. The organizing actions of adolescent gonadal steroid hormones on brain and behavioral development. Neurosci. Biobehav. Rev. 70, 148–158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alloy, L. B., Hamilton, J. L., Hamlat, E. J. & Abramson, L. Y. Pubertal development, emotion regulatory styles, and the emergence of sex differences in internalizing disorders and symptoms in adolescence. Clin. Psychol. Sci. 4, 867–881 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Van Anders, S. M., Steiger, J. & Goldey, K. L. Effects of gendered behavior on testosterone in women and men. Proc. Natl Acad. Sci. USA 112, 13805–13810 (2015).

    Article  PubMed  CAS  Google Scholar 

  38. Suderman, M. et al. Sex-associated autosomal DNA methylation differences are wide-spread and stable throughout childhood. bioRxiv 44, 118265 (2017).

    Google Scholar 

  39. Ainsworth, C. Sex redefined. Nature 518, 288–291 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Joel, D. et al. Sex beyond the genitalia: the human brain mosaic. Proc. Natl Acad. Sci. USA 112, 15468–15473 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Joel, D. et al. Analysis of human brain structure reveals that the brain “types” typical of males are also typical of females, and vice versa. Front. Hum. Neurosci. 12, 1–18 (2018).

    Article  Google Scholar 

  42. Pausova, Z. et al. Cohort profile: the Saguenay Youth Study (SYS). Int. J. Epidemiol. 46, e19 (2017).

    PubMed  Google Scholar 

  43. van Buuren, S. & Groothuis-Oudshoorn, K. mice: multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1–68 (2011).

    Google Scholar 

  44. Costa Jr, P. T. & McCrae, R. R. The Revised NEO Personality Inventory (NEO-PI-R). in The SAGE Handbook of Personality Theory and Assessment, Vol. 2. Personality Measurement and Testing (eds Boyle, G. J., Matthews, G. & Saklofske, D. H.) 179–198 (Sage, 2008).

  45. Lucas, C. P. et al. The DISC predictive scales (DPS): efficiently screening for diagnoses. J. Am. Acad. Child Adolesc. Psychiatry 40, 443–449 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Caspi, A., Houts, R. M., Belsky, D. W. & Goldman-mellor, S. J. The p factor: one general psychopathology factor in the structure of psychiatric disorders? Clin. Psychol. Sci. 2, 119–137 (2015).

    Article  Google Scholar 

  47. Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2006).

    Article  Google Scholar 

  48. R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2019).

Download references

Acknowledgements

The Canadian Institutes of Health Research (Z.P., T.P.), Heart and Stroke Foundation of Quebec (Z.P.) and the Canadian Foundation for Innovation (Z.P.) support the Saguenay Youth Study. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. The authors acknowledge J. Shin for her statistical advice.

Author information

Authors and Affiliations

Authors

Contributions

D.E.V. contributed to the project conception, manuscript writing, analyses and figures. C.S. contributed to the participant recruitment and testing, analyses and manuscript editing. N.P. contributed to the analyses and manuscript editing. L.R. and Z.P. contributed to the SYS study design, participant recruitment and testing, and manuscript editing. T.P. contributed to the project conception, SYS study design, participant recruitment and testing, and manuscript writing.

Corresponding author

Correspondence to Tomáš Paus.

Ethics declarations

Competing interests

The authors have no competing interests to declare.

Additional information

Peer review information Primary handling editor: Charlotte Payne.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and Supplementary Tables 1–4.

Reporting Summary

Supplementary Software

R script used to compute sex scores.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vosberg, D.E., Syme, C., Parker, N. et al. Sex continuum in the brain and body during adolescence and psychological traits. Nat Hum Behav 5, 265–272 (2021). https://doi.org/10.1038/s41562-020-00968-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-020-00968-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing