Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neurocomputational mechanisms underlying motivated seeing

Abstract

People tend to believe that their perceptions are veridical representations of the world, but also commonly report perceiving what they want to see or hear. It remains unclear whether this reflects an actual change in what people perceive or merely a bias in their responding. Here we manipulated the percept that participants wanted to see as they performed a visual categorization task. Even though the reward-maximizing strategy was to perform the task accurately, the manipulation biased participants’ perceptual judgements. Motivation increased neural activity selective for the motivationally relevant category, indicating a bias in participants’ neural representation of the presented image. Using a drift diffusion model, we decomposed motivated seeing into response and perceptual components. Response bias was associated with anticipatory activity in the nucleus accumbens, whereas perceptual bias tracked category-selective neural activity. Our results provide a computational description of how the drive for reward leads to inaccurate representations of the world.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental design.
Fig. 2: Motivation biases visual categorization.
Fig. 3: Modeling results.
Fig. 4: DDM accounts for asymmetries in reaction times.
Fig. 5: Neural correlates of motivational bias.
Fig. 6: NAcc activation is associated with response bias.
Fig. 7: Motivation biases face-selective and scene-selective neural activity during visual categorization.

Data availability

The data that support the findings of this study are available from the corresponding author on request. Behavioural data of both the reported experiment and the in-lab replication are available at: https://github.com/ycleong/MotivatedPerception. The unthresholded p-map of the motivation consistent–motivation inconsistent contrast is available at: https://neurovault.org/collections/EAAXGDRJ/images/62743/.

Code availability

The custom code for the modelling and neuroimaging analyses is included in the Supplementary Software. The live version of the code is available at https://github.com/ycleong/MotivatedPerception.

References

  1. 1.

    Bruner, J. S. & Goodman, C. C. Value and need as organizing factors in perception. J. Abnorm. Soc. Psychol. 42, 33–44 (1947).

    CAS  Article  Google Scholar 

  2. 2.

    Dunning, D. & Balcetis, E. Wishful seeing: how preferences shape visual perception. Curr. Dir. Psychol. Sci. 22, 33–37 (2013).

    Article  Google Scholar 

  3. 3.

    Hastorf, A. H. & Cantril, H. They saw a game; a case study. J. Abnorm. Soc. Psychol. 49, 129–134 (1954).

    CAS  Article  Google Scholar 

  4. 4.

    Balcetis, E. & Dunning, D. See what you want to see: motivational influences on visual perception. J. Pers. Soc. Psychol. 91, 612–625 (2006).

    Article  Google Scholar 

  5. 5.

    Kunda, Z. The case for motivated reasoning. Psychol. Bull. 108, 480–498 (1990).

    CAS  Article  Google Scholar 

  6. 6.

    Goldiamond, I. Indicators of perception: I. Subliminal perception, subception, unconscious perception: an analysis in terms of psychophysical indicator methodology. Psychol. Bull. 55, 373–411 (1958).

    CAS  Article  Google Scholar 

  7. 7.

    Firestone, C. & Scholl, B. J. Cognition does not affect perception: evaluating the evidence for ‘top-down’ effects. Behav. Brain Sci. 39, e229 (2016).

    Article  Google Scholar 

  8. 8.

    Forstmann, B. U., Ratcliff, R. & Wagenmakers, E.-J. Sequential sampling models in cognitive neuroscience: advantages, applications, and extensions. Annu. Rev. Psychol. 67, 641–666 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Ratcliff, R. & McKoon, G. The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 20, 873–922 (2008).

    Article  Google Scholar 

  10. 10.

    Berridge, K. C. The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology 191, 391–431 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    Knutson, B., Adams, C. M., Fong, G. W. & Hommer, D. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J. Neurosci. 21, RC159 (2001).

    CAS  Article  Google Scholar 

  12. 12.

    Floresco, S. B. The nucleus accumbens: an interface between cognition, emotion, and action. Annu. Rev. Psychol. 66, 25–52 (2015).

    Article  Google Scholar 

  13. 13.

    Ikemoto, S. & Panksepp, J. The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res. Rev. 31, 6–41 (1999).

    CAS  Article  Google Scholar 

  14. 14.

    Nicola, S. M. The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology 191, 521–550 (2007).

    CAS  Article  Google Scholar 

  15. 15.

    McGinty, V. B., Lardeux, S., Taha, S. A., Kim, J. J. & Nicola, S. M. Invigoration of reward seeking by cue and proximity encoding in the nucleus accumbens. Neuron 78, 910–922 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Stopper, C. M. & Floresco, S. B. Contributions of the nucleus accumbens and its subregions to different aspects of risk-based decision making. Cogn. Affect. Behav. Neurosci. 11, 97–112 (2011).

    Article  Google Scholar 

  17. 17.

    Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    Heekeren, H. R., Marrett, S. & Ungerleider, L. G. The neural systems that mediate human perceptual decision making. Nat. Rev. Neurosci. 9, 467–479 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    Shadlen, M. N., Britten, K. H., Newsome, W. T. & Movshon, J. A. A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J. Neurosci. 16, 1486–1510 (1996).

    CAS  Article  Google Scholar 

  20. 20.

    Heekeren, H. R., Marrett, S., Bandettini, P. A. & Ungerleider, L. G. A general mechanism for perceptual decision-making in the human brain. Nature 431, 859–862 (2004).

    CAS  Article  Google Scholar 

  21. 21.

    Summerfield, C. & Egner, T. Expectation (and attention) in visual cognition. Trends Cogn. Sci. 13, 403–409 (2009).

    Article  Google Scholar 

  22. 22.

    Grill-Spector, K. The neural basis of object perception. Curr. Opin. Neurobiol. 13, 159–166 (2003).

    CAS  Article  Google Scholar 

  23. 23.

    Hasson, U., Hendler, T., Bashat, D. B. & Malach, R. Vase or face? A neural correlate of shape-selective grouping processes in the human brain. J. Cogn. Neurosci. 13, 744–753 (2001).

    CAS  Article  Google Scholar 

  24. 24.

    White, C. N. & Poldrack, R. A. Decomposing bias in different types of simple decisions. J. Exp. Psychol. Learn. Mem. Cogn. 40, 385–398 (2014).

    Article  Google Scholar 

  25. 25.

    Wiecki, T. V., Sofer, I. & Frank, M. J. HDDM: hierarchical Bayesian estimation of the drift-diffusion model in Python. Front. Neuroinform. 7, 14 (2013).

    Article  Google Scholar 

  26. 26.

    Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Van Der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 583–639 (2002).

    Article  Google Scholar 

  27. 27.

    Boehm, U. et al. Estimating across-trial variability parameters of the diffusion decision model: expert advice and recommendations. J. Math. Psychol. 87, 46–75 (2018).

    Article  Google Scholar 

  28. 28.

    Allport, F. H. Theories of Perception and the Concept of Structure: A Review and Critical Analysis with an Introduction to a Dynamic-Structural Theory of Behavior (John Wiley & Sons, 1955).

  29. 29.

    Bruner, J. S. On perceptual readiness. Psychol. Rev. 64, 123–152 (1957).

    CAS  Article  Google Scholar 

  30. 30.

    Balcetis, E., Dunning, D. & Granot, Y. Subjective value determines initial dominance in binocular rivalry. J. Exp. Soc. Psychol. 48, 122–129 (2012).

    Article  Google Scholar 

  31. 31.

    Balcetis, E. & Dunning, D. Wishful seeing: more desired objects are seen as closer. Psychol. Sci. 21, 147–152 (2010).

    Article  Google Scholar 

  32. 32.

    van Koningsbruggen, G. M., Stroebe, W. & Aarts, H. Through the eyes of dieters: biased size perception of food following tempting food primes. J. Exp. Soc. Psychol. 47, 293–299 (2011).

    Article  Google Scholar 

  33. 33.

    Voss, A., Rothermund, K. & Brandtstädter, J. Interpreting ambiguous stimuli: separating perceptual and judgmental biases. J. Exp. Soc. Psychol. 44, 1048–1056 (2008).

    Article  Google Scholar 

  34. 34.

    Moran, R. Optimal decision making in heterogeneous and biased environments. Psychon. Bull. Rev. 22, 38–53 (2015).

    Article  Google Scholar 

  35. 35.

    Hanks, T. D., Mazurek, M. E., Kiani, R., Hopp, E. & Shadlen, M. N. Elapsed decision time affects the weighting of prior probability in a perceptual decision task. J. Neurosci. 31, 6339–6352 (2011).

    CAS  Article  Google Scholar 

  36. 36.

    Serences, J. T. Value-based modulations in human visual cortex. Neuron 60, 1169–1181 (2008).

    CAS  Article  Google Scholar 

  37. 37.

    Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

    CAS  Article  Google Scholar 

  38. 38.

    Petersen, S. E. & Posner, M. I. The attention system of the human brain: 20 years after. Annu. Rev. Neurosci. 35, 73–89 (2012).

    CAS  Article  Google Scholar 

  39. 39.

    Leong, Y. C., Radulescu, A., Daniel, R., DeWoskin, V. & Niv, Y. Dynamic interaction between reinforcement learning and attention in multidimensional environments. Neuron 93, 451–463 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    Menon, V. in Brain Mapping (ed. Toga, A. W.) 597–611 (Academic Press, 2015).

  41. 41.

    Sridharan, D., Levitin, D. J. & Menon, V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Natl Acad. Sci. USA 105, 12569–12574 (2008).

    CAS  Article  Google Scholar 

  42. 42.

    Shenhav, A., Straccia, M. A., Musslick, S., Cohen, J. D. & Botvinick, M. M. Dissociable neural mechanisms track evidence accumulation for selection of attention versus action. Nat. Commun. 9, 2485 (2018).

    Article  Google Scholar 

  43. 43.

    Niv, Y., Daw, N. D., Joel, D. & Dayan, P. Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology 191, 507–520 (2007).

    CAS  Article  Google Scholar 

  44. 44.

    Feng, S., Holmes, P., Rorie, A. & Newsome, W. T. Can monkeys choose optimally when faced with noisy stimuli and unequal rewards? PLoS Comput. Biol. 5, e1000284 (2009).

    Article  Google Scholar 

  45. 45.

    Mulder, M. J., Wagenmakers, E.-J., Ratcliff, R., Boekel, W. & Forstmann, B. U. Bias in the brain: a diffusion model analysis of prior probability and potential payoff. J. Neurosci. 32, 2335–2343 (2012).

    CAS  Article  Google Scholar 

  46. 46.

    Rorie, A. E., Gao, J., McClelland, J. L. & Newsome, W. T. Integration of sensory and reward information during perceptual decision-making in lateral intraparietal cortex (LIP) of the macaque monkey. PLoS One 5, e9308 (2010).

    Article  Google Scholar 

  47. 47.

    Summerfield, C. & Koechlin, E. Economic value biases uncertain perceptual choices in the parietal and prefrontal cortices. Front. Hum. Neurosci. 4, 208 (2010).

    Article  Google Scholar 

  48. 48.

    Bogacz, R., Brown, E., Moehlis, J., Holmes, P. & Cohen, J. D. The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 113, 700–765 (2006).

    Article  Google Scholar 

  49. 49.

    Flagan, T., Mumford, J. A. & Beer, J. S. How do you see me? The neural basis of motivated meta-perception. J. Cogn. Neurosci. 29, 1908–1917 (2017).

    Article  Google Scholar 

  50. 50.

    Hughes, B. L. & Beer, J. S. Orbitofrontal cortex and anterior cingulate cortex are modulated by motivated social cognition. Cereb. Cortex 22, 1372–1381 (2012).

    Article  Google Scholar 

  51. 51.

    Korn, C. W., Prehn, K., Park, S. Q., Walter, H. & Heekeren, H. R. Positively biased processing of self-relevant social feedback. J. Neurosci. 32, 16832–16844 (2012).

    CAS  Article  Google Scholar 

  52. 52.

    Hughes, B. L. & Zaki, J. The neuroscience of motivated cognition. Trends Cogn. Sci. 19, 62–64 (2015).

    Article  Google Scholar 

  53. 53.

    Lefebvre, G., Lebreton, M., Meyniel, F., Bourgeois-Gironde, S. & Palminteri, S. Behavioural and neural characterization of optimistic reinforcement learning. Nat. Hum. Behav. 1, 0067 (2017).

    Article  Google Scholar 

  54. 54.

    Sharot, T., Korn, C. W. & Dolan, R. J. How unrealistic optimism is maintained in the face of reality. Nat. Neurosci. 14, 1475–1479 (2011).

    CAS  Article  Google Scholar 

  55. 55.

    Ma, D. S., Correll, J. & Wittenbrink, B. The Chicago face database: a free stimulus set of faces and norming data. Behav. Res. Methods 47, 1122–1135 (2015).

    Article  Google Scholar 

  56. 56.

    Brainard, D. H. The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997).

    CAS  Article  Google Scholar 

  57. 57.

    Knoblauch, K. & Maloney, L. T. Modeling Psychophysical Data in R (Springer, 2012).

  58. 58.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  59. 59.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Article  Google Scholar 

  60. 60.

    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2003).

  61. 61.

    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).

    Article  Google Scholar 

  62. 62.

    Smith, S. M. & Nichols, T. E. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44, 83–98 (2009).

    Article  Google Scholar 

  63. 63.

    Abraham, A. et al. Machine learning for neuroimaging with scikit-learn. Front. Neruoinform. 8, 14 (2014).

    Google Scholar 

  64. 64.

    Hughes, B. L., Zaki, J. & Ambady, N. Motivation alters impression formation and related neural systems. Soc. Cogn. Affect. Neurosci. 12, 49–60 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We thank I. Ballard and members of the Stanford Social Neuroscience Laboratory for scientific discussions and helpful comments on earlier versions of the manuscript. The research was supported by the Wu Tsai Neuroscience Institute NeuroChoice Initiative. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

Y.C.L., B.L.H. and J.Z. designed the study. Y.C.L. and Y.W. collected and analysed the data. Y.C.L. and J.Z. wrote the manuscript, with revisions from Y.W. and B.L.H.

Corresponding author

Correspondence to Yuan Chang Leong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Primary Handling Editor: Mary Elizabeth Sutherland.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary information

Supplementary Notes 1–4, Supplementary Figures 1–8, Supplementary Tables 1–5, and Supplementary References.

Reporting Summary

Supplementary Software

Custom code for the multivariate analyses and drift diffusion models that are described in the main text.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leong, Y.C., Hughes, B.L., Wang, Y. et al. Neurocomputational mechanisms underlying motivated seeing. Nat Hum Behav 3, 962–973 (2019). https://doi.org/10.1038/s41562-019-0637-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing