Article | Published:

Extensive childhood experience with Pokémon suggests eccentricity drives organization of visual cortex

Nature Human Behaviour (2019) | Download Citation

Abstract

The functional organization of human high-level visual cortex, such as the face- and place-selective regions, is strikingly consistent across individuals. An unanswered question in neuroscience concerns which dimensions of visual information constrain the development and topography of this shared brain organization. To answer this question, we used functional magnetic resonance imaging to scan a unique group of adults who, as children, had extensive visual experience with Pokémon. These animal-like, pixelated characters are dissimilar from other ecological categories, such as faces and places, along critical dimensions (foveal bias, rectilinearity, size, animacy). We show not only that adults who have Pokémon experience demonstrate distinct distributed cortical responses to Pokémon, but also that the experienced retinal eccentricity during childhood can predict the locus of Pokémon responses in adulthood. These data demonstrate that inherent functional representations in the visual cortex—retinal eccentricity—combined with consistent viewing behaviour of particular stimuli during childhood result in a shared functional topography in adulthood.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data that support the findings of this study are available from the corresponding author on request. There are no restrictions on the sharing of the data, apart from allowing sufficient time to curate and send them on request.

Code availability

Code used to preprocess and analyse MRI data in this experiment can be found at Vistasoft (https://github.com/vistalab/vistasoft). Remaining code used to further process the data in this experiment can be found at https://www.gomezneuro.com/code.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Ungerleider, L. G. & Mishkin, M. in Analysis of Visual Behavior (eds Ingle, D. J. et al.) 549–586 (MIT Press, 1982).

  2. 2.

    DiCarlo, J. J. & Cox, D. D. Untangling invariant object recognition. Trends Cogn. Sci. 11, 333–341 (2007).

  3. 3.

    Desimone, R., Albright, T. D., Gross, C. G. & Bruce, C. Stimulus-selective properties of inferior temporal neurons in the macaque. J. Neurosci. 4, 2051–2062 (1984).

  4. 4.

    Logothetis, N. K., Pauls, J. & Poggio, T. Shape representation in the inferior temporal cortex of monkeys. Curr. Biol. 5, 552–563 (1995).

  5. 5.

    Hanson, S. J., Matsuka, T. & Haxby, J. V. Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a “face” area? NeuroImage 23, 156–166 (2004).

  6. 6.

    Grill-Spector, K., Weiner, K. S., Kay, K. N. & Gomez, J. The functional neuroanatomy of human face perception. Annu. Rev. Vis. Sci. 3, 167–196 (2017).

  7. 7.

    Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

  8. 8.

    Aguirre, G. K., Zarahn, E. & D’Esposito, M. An area within human ventral cortex sensitive to ‘building’ stimuli: evidence and implications. Neuron 21, 373–383 (1998).

  9. 9.

    Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598–601 (1998).

  10. 10.

    Ben-Shachar, M., Dougherty, R. F., Deutsch, G. K. & Wandell, B. A. Differential sensitivity to words and shapes in ventral occipito-temporal cortex. Cereb. Cortex 17, 1604–1611 (2007).

  11. 11.

    McCandliss, B. D., Cohen, L. & Dehaene, S. The visual word form area: expertise for reading in the fusiform gyrus. Trends Cogn. Sci. 7, 293–299 (2003).

  12. 12.

    Cohen, L. et al. The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain 123, 291–307 (2000).

  13. 13.

    Parvizi, J. et al. Electrical stimulation of human fusiform face-selective regions distorts face perception. J. Neurosci. 32, 14915–14920 (2012).

  14. 14.

    Megevand, P. et al. Seeing scenes: topographic visual hallucinations evoked by direct electrical stimulation of the parahippocampal place area. J. Neurosci. 34, 5399–5405 (2014).

  15. 15.

    Hirshorn, E. A. et al. Decoding and disrupting left midfusiform gyrus activity during word reading. Proc. Natl Acad. Sci. USA 113, 8162–8167 (2016).

  16. 16.

    Grill-Spector, K., Weiner, K. S., Kay, K. N. & Gomez, J. The functional neuroanatomy of human face perception. Annu. Rev. Vis. Sci 3, 167–196 (2016).

  17. 17.

    Weiner, K. S. & Grill-Spector, K. Neural representations of faces and limbs neighbor in human high-level visual cortex: evidence for a new organization principle. Psychol. Res. 77, 74–97 (2013).

  18. 18.

    Weiner, K. S. et al. Defining the most probable location of the parahippocampal place area using cortex-based alignment and cross-validation. NeuroImage 170, 373–384 (2017).

  19. 19.

    Malach, R., Levy, I. & Hasson, U. The topography of high-order human object areas. Trends Cogn. Sci. 6, 176–184 (2002).

  20. 20.

    Golarai, G., Liberman, A. & Grill-Spector, K. Experience shapes the development of neural substrates of face processing in human ventral temporal cortex. Cereb. Cortex 27, bhv314 (2015).

  21. 21.

    Kanwisher, N. Functional specificity in the human brain: a window into the functional architecture of the mind. Proc. Natl Acad. Sci. USA 107, 11163–11170 (2010).

  22. 22.

    Haxby, J. V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001).

  23. 23.

    Kriegeskorte, N. et al. Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60, 1126–1141 (2008).

  24. 24.

    Hasson, U., Levy, I., Behrmann, M., Hendler, T. & Malach, R. Eccentricity bias as an organizing principle for human high-order object areas. Neuron 34, 479–490 (2002).

  25. 25.

    Nasr, S., Echavarria, C. E. & Tootell, R. B. Thinking outside the box: rectilinear shapes selectively activate scene-selective cortex. J. Neurosci. 34, 6721–6735 (2014).

  26. 26.

    Konkle, T. & Caramazza, A. Tripartite organization of the ventral stream by animacy and object size. J. Neurosci. 33, 10235–10242 (2013).

  27. 27.

    de Heering, A. & Maurer, D. Face memory deficits in patients deprived of early visual input by bilateral congenital cataracts. Dev. Psychobiol. 56, 96–108 (2014).

  28. 28.

    Gandhi, T. K., Singh, A. K., Swami, P., Ganesh, S. & Sinha, P. Emergence of categorical face perception after extended early-onset blindness. Proc. Natl Acad. Sci. USA 114, 6139–6143 (2017).

  29. 29.

    McKyton, A., Ben-Zion, I., Doron, R. & Zohary, E. The limits of shape recognition following late emergence from blindness. Curr. Biol. 25, 2373–2378 (2015).

  30. 30.

    Dehaene, S. et al. How learning to read changes the cortical networks for vision and language. Science 330, 1359–1364 (2010).

  31. 31.

    Gomez, J., Natu, V., Jeska, B., Barnett, M. & Grill-Spector, K. Development differentially sculpts receptive fields across early and high-level human visual cortex. Nat. Commun. 9, 788 (2018).

  32. 32.

    Arcaro, M. J., Schade, P. F., Vincent, J. L., Ponce, C. R. & Livingstone, M. S. Seeing faces is necessary for face-domain formation. Nat. Neurosci. 20, 1404–1412 (2017).

  33. 33.

    Srihasam, K., Vincent, J. L. & Livingstone, M. S. Novel domain formation reveals proto-architecture in inferotemporal cortex. Nat. Neurosci. 17, 1776–1783 (2014).

  34. 34.

    Sha, L. et al. The animacy continuum in the human ventral vision pathway. J. Cogn. Neurosci. 27, 665–678 (2015).

  35. 35.

    Wiggett, A. J., Pritchard, I. C. & Downing, P. E. Animate and inanimate objects in human visual cortex: evidence for task-independent category effects. Neuropsychologia 47, 3111–3117 (2009).

  36. 36.

    Warrington, E. K. & Shallice, T. Category specific semantic impairments. Brain 107, 829–854 (1984).

  37. 37.

    Martin, A., Wiggs, C. L., Ungerleider, L. G. & Haxby, J. V. Neural correlates of category-specific knowledge. Nature 379, 649–652 (1996).

  38. 38.

    Konkle, T. & Oliva, A. A real-world size organization of object responses in occipitotemporal cortex. Neuron 74, 1114–1124 (2012).

  39. 39.

    Arcaro, M. J. & Livingstone, M. S. A hierarchical, retinotopic proto-organization of the primate visual system at birth. eLife 6, e26196 (2017).

  40. 40.

    Huberman, A. D., Feller, M. B. & Chapman, B. Mechanisms underlying development of visual maps and receptive fields. Annu. Rev. Neurosci. 31, 479–509 (2008).

  41. 41.

    Osher, D. E. et al. Structural connectivity fingerprints predict cortical selectivity for multiple visual categories across cortex. Cereb. Cortex 26, 1668–1683 (2016).

  42. 42.

    Shatz, C. J. Emergence of order in visual system development. J. Physiol. 90, 141–150 (1996).

  43. 43.

    Srihasam, K., Mandeville, J. B., Morocz, I. A., Sullivan, K. J. & Livingstone, M. S. Behavioral and anatomical consequences of early versus late symbol training in macaques. Neuron 73, 608–619 (2012).

  44. 44.

    Hensch, T. K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005).

  45. 45.

    Wiesel, T. N. & Hubel, D. H. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017 (1963).

  46. 46.

    Hubel, D. H. & Wiesel, T. N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. 206, 419–436 (1970).

  47. 47.

    Shatz, C. J. Impulse activity and the patterning of connections during CNS development. Neuron 5, 745–756 (1990).

  48. 48.

    Espinosa, J. S. & Stryker, M. P. Development and plasticity of the primary visual cortex. Neuron 75, 230–249 (2012).

  49. 49.

    Grill-Spector, K. & Weiner, K. S. The functional architecture of the ventral temporal cortex and its role in categorization. Nat. Rev. Neurosci. 15, 536–548 (2014).

  50. 50.

    Gauthier, I., Skudlarski, P., Gore, J. C. & Anderson, A. W. Expertise for cars and birds recruits brain areas involved in face recognition. Nat. Neurosci. 3, 191–197 (2000).

  51. 51.

    James, T. W. & James, K. H. Expert individuation of objects increases activation in the fusiform face area of children. NeuroImage 67, 182–192 (2013).

  52. 52.

    Nordt, M., Gomez, J., Natu, V. S. & Jeska, B. Learning to read increases the informativeness of distributed ventral temporal responses. Preprint at bioRxiv https://doi.org/10.1101/257055 (2018).

  53. 53.

    Harel, A., Gilaie-Dotan, S., Malach, R. & Bentin, S. Top-down engagement modulates the neural expressions of visual expertise. Cereb. Cortex 20, 2304–2318 (2010).

  54. 54.

    McGugin, R. W., Newton, A. T., Gore, J. C. & Gauthier, I. Robust expertise effects in right FFA. Neuropsychologia 63, 135–144 (2014).

  55. 55.

    Levy, I., Hasson, U., Avidan, G., Hendler, T. & Malach, R. Center-periphery organization of human object areas. Nat. Neurosci. 4, 533–539 (2001).

  56. 56.

    Connolly, A. C. et al. The representation of biological classes in the human brain. J. Neurosci. 32, 2608–2618 (2012).

  57. 57.

    Fischl, B., Sereno, M. I. & Dale, A. M. Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. NeuroImage 9, 195–207 (1999).

  58. 58.

    Wandell, B. A. & Winawer, J. Computational neuroimaging and population receptive fields. Trends Cogn. Sci. 19, 349–357 (2015).

  59. 59.

    Dumoulin, S. O. & Wandell, B. A. Population receptive field estimates in human visual cortex. NeuroImage 39, 647–660 (2008).

  60. 60.

    Duda, R. O., Hart, P. E. & Stork, D. G. Pattern Classification 2nd edn (Wiley, 2001).

  61. 61.

    Weiner, K. S. & Grill-Spector, K. Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. NeuroImage 52, 1559–1573 (2010).

  62. 62.

    McGugin, R. W., Gatenby, J. C., Gore, J. C. & Gauthier, I. High-resolution imaging of expertise reveals reliable object selectivity in the fusiform face area related to perceptual performance. Proc. Natl Acad. Sci. USA 109, 17063–17068 (2012).

  63. 63.

    Op de Beeck, H. P., Baker, C. I., DiCarlo, J. J. & Kanwisher, N. G. Discrimination training alters object representations in human extrastriate cortex. J. Neurosci. 26, 13025–13036 (2006).

  64. 64.

    Martens, F., Bulthé, J., van Vliet, C. & Op de Beeck, H. Domain-general and domain-specific neural changes underlying visual expertise. NeuroImage 169, 80–93 (2018).

  65. 65.

    Jiang, X. et al. Categorization training results in shape- and category-selective human neural plasticity. Neuron 53, 891–903 (2007).

  66. 66.

    Clarke, A., Pell, P. J., Ranganath, C. & Tyler, L. K. Learning warps object representations in the ventral temporal cortex. J. Cogn. Neurosci. 28, 1010–1023 (2016).

  67. 67.

    Natu, V. S. et al. Development of neural sensitivity to face identity correlates with perceptual discriminability. J. Neurosci. 36, 10893–10907 (2016).

  68. 68.

    Jiang, X., Chevillet, M. A., Rauschecker, J. P. & Riesenhuber, M. Training humans to categorize monkey calls: auditory feature- and category-selective neural tuning changes. Neuron 98, 405–416 (2018).

  69. 69.

    Ben-Shachar, M., Dougherty, R. F., Deutsch, G. K. & Wandell, B. A. The development of cortical sensitivity to visual word forms. J. Cogn. Neurosci. 23, 2387–2399 (2011).

  70. 70.

    Dehaene-Lambertz, G., Monzalvo, K. & Dehaene, S. The emergence of the visual word form: longitudinal evolution of category-specific ventral visual areas during reading acquisition. PLoS Biol. 16, e2004103 (2018).

  71. 71.

    Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P. & Gore, J. C. Activation of the middle fusiform ‘face area’ increases with expertise in recognizing novel objects. Nat. Neurosci. 2, 568–573 (1999).

  72. 72.

    Op de Beeck, H. P., Deutsch, J. A., Vanduffel, W., Kanwisher, N. G. & DiCarlo, J. J. A stable topography of selectivity for unfamiliar shape classes in monkey inferior temporal cortex. Cereb. Cortex 18, 1676–1694 (2008).

  73. 73.

    Kobatake, E., Wang, G. & Tanaka, K. Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. J. Neurophysiol. 80, 324–330 (1998).

  74. 74.

    Golarai, G. et al. Differential development of high-level visual cortex correlates with category-specific recognition memory. Nat. Neurosci. 10, 512–522 (2007).

  75. 75.

    Scherf, K. S., Behrmann, M., Humphreys, K. & Luna, B. Visual category-selectivity for faces, places and objects emerges along different developmental trajectories. Dev. Sci. 10, 15–30 (2007).

  76. 76.

    Peelen, M. V., Glaser, B., Vuilleumier, P. & Eliez, S. Differential development of selectivity for faces and bodies in the fusiform gyrus. Dev. Sci. 12, 16–25 (2009).

  77. 77.

    Cantlon, J. F., Pinel, P., Dehaene, S. & Pelphrey, K. A. Cortical representations of symbols, objects, and faces are pruned back during early childhood. Cereb. Cortex 21, 191–199 (2011).

  78. 78.

    Gomez, J. et al. Microstructural proliferation in human cortex is coupled with the development of face processing. Science 355, 68–71 (2017).

  79. 79.

    Weiner, K. S. & Zilles, K. The anatomical and functional specialization of the fusiform gyrus. Neuropsychologia 83, 48–62 (2016).

  80. 80.

    Hasson, U., Harel, M., Levy, I. & Malach, R. Large-scale mirror-symmetry organization of human occipito-temporal object areas. Neuron 37, 1027–1041 (2003).

  81. 81.

    Lewis, T. L. & Maurer, D. Multiple sensitive periods in human visual development: evidence from visually deprived children. Dev. Psychobiol. 46, 163–183 (2005).

  82. 82.

    Blais, C., Jack, R. E., Scheepers, C., Fiset, D. & Caldara, R. Culture shapes how we look at faces. PLoS One 3, e3022 (2008).

  83. 83.

    Biscaldi, M., Fischer, B. & Aiple, F. Saccadic eye movements of dyslexic and normal reading children. Perception 23, 45–64 (1994).

  84. 84.

    Olulade, O. A., Napoliello, E. M. & Eden, G. F. Abnormal visual motion processing is not a cause of dyslexia. Neuron 79, 180–190 (2013).

  85. 85.

    Dalton, K. M. et al. Gaze fixation and the neural circuitry of face processing in autism. Nat. Neurosci. 8, 519–526 (2005).

  86. 86.

    Stigliani, A., Weiner, K. S. & Grill-Spector, K. Temporal processing capacity in high-level visual cortex is domain specific. J. Neurosci. 35, 12412–12424 (2015).

  87. 87.

    Willenbockel, V. et al. Controlling low-level image properties: the SHINE toolbox. Behav. Res. Methods 42, 671–684 (2010).

  88. 88.

    Kay, K. N., Winawer, J., Mezer, A. & Wandell, B. A. Compressive spatial summation in human visual cortex. J. Neurophysiol. 110, 481–494 (2013).

  89. 89.

    Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9, 179–194 (1999).

  90. 90.

    Feinberg, D. A. & Setsompop, K. Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. J. Magn. Reson. 229, 90–100 (2013).

  91. 91.

    Rosenke, M. et al. A cross-validated cytoarchitectonic atlas of the human ventral visual stream. NeuroImage 170, 257–270 (2018).

  92. 92.

    Bababekova, Y., Rosenfield, M., Hue, J. E. & Huang, R. R. Font size and viewing distance of handheld smart phones. Optom. Vis. Sci. 88, 795–797 (2011).

  93. 93.

    McKone, E. Holistic processing for faces operates over a wide range of sizes but is strongest at identification rather than conversational distances. Vision Res. 49, 268–283 (2009).

  94. 94.

    Weiner, K. S. et al. The face-processing network is resilient to focal resection of human visual cortex. J. Neurosci. 36, 8425–8440 (2016).

  95. 95.

    Gomez, J. et al. Functionally defined white matter reveals segregated pathways in human ventral temporal cortex associated with category-specific processing. Neuron 85, 216–227 (2015).

  96. 96.

    Furl, N., Garrido, L., Dolan, R. J., Driver, J. & Duchaine, B. Fusiform gyrus face selectivity relates to individual differences in facial recognition ability. J. Cogn. Neurosci. 23, 1723–1740 (2011).

Download references

Acknowledgements

This research was funded by the Ruth L. Kirschstein National Research Service Award grant no. F31EY027201 to J.G., NIH grant nos. 1ROI1EY02231801A1 and 2RO1EY022318-06 to K.G.-S. and a seed grant awarded to J.G. by the Stanford University Center for Cognitive and Neurobiological Imaging. We thank A. Urai for her Matlab plotting toolbox. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

  1. Neurosciences Program, Stanford University School of Medicine, Stanford, CA, USA

    • Jesse Gomez
    •  & Kalanit Grill-Spector
  2. Psychology Department, University of California Berkeley, Berkeley, CA, USA

    • Jesse Gomez
  3. Psychology Department, University of Pennsylvania, Philadelphia, PA, USA

    • Michael Barnett
  4. Psychology Department, Stanford University, Stanford, CA, USA

    • Kalanit Grill-Spector
  5. Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA

    • Kalanit Grill-Spector

Authors

  1. Search for Jesse Gomez in:

  2. Search for Michael Barnett in:

  3. Search for Kalanit Grill-Spector in:

Contributions

J.G. and M.B. designed and conducted the study. J.G. analysed the data. K.G.-S. oversaw the study and data analyses. J.G. and K.G.-S. wrote the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Jesse Gomez.

Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41562-019-0592-8