Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The macaque face patch system: a turtle’s underbelly for the brain

Abstract

Objects constitute the fundamental currency of our consciousness: they are the things that we perceive, remember and think about. One of the most important objects for a primate is a face. Research on the macaque face patch system in recent years has given us a remarkable window into the detailed processes underlying object recognition. Here, we review the macaque face patch system, including its anatomical organization, coding principles, role in behaviour and interactions with other brain regions. We highlight not only how it constitutes an archetypal object recognition system but also how it may provide a key to understanding mechanisms for higher cognitive function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Face-selective patches in the macaque cortex.
Fig. 2: Anatomical connectivity of face patches.
Fig. 3: Probing feature selectivity of face cells.
Fig. 4: Increasing view invariance across the face patch hierarchy.
Fig. 5: The neural code for facial identity.
Fig. 6: The neural code for object identity in general.

Similar content being viewed by others

References

  1. Sherrington, C. S. Man on his nature. Nature 147, 127–129 (1940).

    Google Scholar 

  2. Tanaka, K. Inferotemporal cortex and object vision. Ann. Rev. Neurosci. 19, 109–139 (1996).

    CAS  PubMed  Google Scholar 

  3. Todorov, A., Mandisodza, A. N., Goren, A. & Hall, C. C. Inferences of competence from faces predict election outcomes. Science 308, 1623–1626 (2005).

    CAS  PubMed  Google Scholar 

  4. Medawar, P. B. Advice to a Young Scientist (Basic Books, 2008).

  5. Bao, P., She, L., Mcgill, M. & Tsao, D. Y. A map of object space in primate inferotemporal cortex. Nature 583, 103–108 (2020). This paper clarifies the general organizational principle of the IT cortex, showing that the face patch network constitutes part of a map of object space within IT.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gross, C. G. in History of Neuroscience in Autobiography (eds Albright, T. & Squire, L. R.) (Oxford University Press, 2006).

  7. Konorski, J. Integrative Activity of the Brain (University of Chicago Press, 1967).

  8. Bruce, C., Desimone, R. & Gross, C. G. Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J. Neurophysiol. 46, 369–384 (1981).

    CAS  PubMed  Google Scholar 

  9. Desimone, R., Albright, T. D., Gross, C. G. & Bruce, C. Stimulus-selective properties of inferior temporal neurons in the macaque. J. Neurosci. 4, 2051–2062 (1984). This is one of the earliest attempts to systematically analyse the selectivity of IT cells, including face cells, reporting a concentrated cluster of face cells in the fundus of the STS, likely corresponding to face patch MF.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gross, C. G., Rocha-Miranda, C. D. & Bender, D. B. Visual properties of neurons in inferotemporal cortex of the Macaque. J. Neurophysiol. 35, 96–111 (1972).

    CAS  PubMed  Google Scholar 

  11. Marr, D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (Henry Holt and Co. Inc., 1982).

  12. Baylis, G., Rolls, E. T. & Leonard, C. Selectivity between faces in the responses of a population of neurons in the cortex in the superior temporal sulcus of the monkey. Brain Res. 342, 91–102 (1985).

    CAS  PubMed  Google Scholar 

  13. Baylis, G. C., Rolls, E. T. & Leonard, C. Functional subdivisions of the temporal lobe neocortex. J. Neurosci. 7, 330–342 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997). This landmark paper identified several regions in the human brain that respond selectively to faces, including one in the right fusiform gyrus and demonstrated this region is specialized for processing faces through a stringent set of tests.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Clark, V. et al. Functional magnetic resonance imaging of human visual cortex during face matching: a comparison with positron emission tomography. Neuroimage 4, 1–15 (1996).

    CAS  PubMed  Google Scholar 

  16. Courtney, S. M., Ungerleider, L. G., Keil, K. & Haxby, J. V. Transient and sustained activity in a distributed neural system for human working memory. Nature 386, 608–611 (1997).

    CAS  PubMed  Google Scholar 

  17. Haxby, J. V. et al. The effect of face inversion on activity in human neural systems for face and object perception. Neuron 22, 189–199 (1999).

    CAS  PubMed  Google Scholar 

  18. Malach, R. et al. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc. Natl Acad. Sci. USA 92, 8135–8139 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Puce, A., Allison, T., Asgari, M., Gore, J. C. & McCarthy, G. Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. J. Neurosci. 16, 5205–5215 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Puce, A., Allison, T., Gore, J. C. & McCarthy, G. Face-sensitive regions in human extrastriate cortex studied by functional MRI. J. Neurophysiol. 74, 1192–1199 (1995).

    CAS  PubMed  Google Scholar 

  21. Sergent, J., Ohta, S. & Macdonald, B. Functional neuroanatomy of face and object processing: a positron emission tomography study. Brain 115, 15–36 (1992).

    PubMed  Google Scholar 

  22. DiCarlo, J. J. & Cox, D. D. Untangling invariant object recognition. Trends Cogn. Sci. 11, 333–341 (2007).

    PubMed  Google Scholar 

  23. Sapountzis, P., Schluppeck, D., Bowtell, R. & Peirce, J. W. A comparison of fMRI adaptation and multivariate pattern classification analysis in visual cortex. Neuroimage 49, 1632–1640 (2010).

    PubMed  Google Scholar 

  24. Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P. & Gore, J. C. Activation of the middle fusiform face area increases with expertise in recognizing novel objects. Nat. Neurosci. 2, 568–573 (1999).

    CAS  PubMed  Google Scholar 

  25. de Beeck, H. P. O., Baker, C. I., DiCarlo, J. J. & Kanwisher, N. G. Discrimination training alters object representations in human extrastriate cortex. J. Neurosci. 26, 13025–13036 (2006).

    Google Scholar 

  26. Tsao, D. Y., Freiwald, W. A., Knutsen, T. A., Mandeville, J. B. & Tootell, R. B. Faces and objects in macaque cerebral cortex. Nat. Neurosci. 6, 989–995 (2003). This was the first paper to identify face patches in macaques with fMRI.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsao, D. Y., Moeller, S. & Freiwald, W. A. Comparing face patch systems in macaques and humans. Proc. Natl Acad. Sci. USA 105, 19514–19519 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Afraz, A., Boyden, E. S. & DiCarlo, J. J. Optogenetic and pharmacological suppression of spatial clusters of face neurons reveal their causal role in face gender discrimination. Proc. Natl Acad. Sci. USA 112, 6730–6735 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Aparicio, P. L., Issa, E. B. & DiCarlo, J. J. Neurophysiological organization of the middle face patch in macaque inferior temporal cortex. J. Neurosci. 36, 12729–12745 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Arcaro, M. J., Schade, P. F., Vincent, J. L., Ponce, C. R. & Livingstone, M. S. Seeing faces is necessary for face-domain formation. J. Neurosci. 20, 1404–1412 (2017). In this study, monkeys were deprived of face experience from birth and it was found that these monkeys did not develop face patches but retained a retinotopic organization and modules selective for other categories.

    CAS  Google Scholar 

  31. Issa, E. B. & DiCarlo, J. J. Precedence of the eye region in neural processing of faces. J. Neurosci. 32, 16666–16682 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Livingstone, M. S. et al. Development of the macaque face-patch system. Nat. Commun. 8, 14897 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. McMahon, D. B., Jones, A. P., Bondar, I. V. & Leopold, D. A. Face-selective neurons maintain consistent visual responses across months. Proc. Natl Acad. Sci. USA 111, 8251–8256 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. McMahon, D. B., Russ, B. E., Elnaiem, H. D., Kurnikova, A. I. & Leopold, D. A. Single-unit activity during natural vision: diversity, consistency, and spatial sensitivity among AF face patch neurons. J. Neurosci. 35, 5537–5548 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pinsk, M. A. et al. Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study. J. Neurophysiol. 101, 2581–2600 (2009).

    PubMed  PubMed Central  Google Scholar 

  36. Pinsk, M. A., DeSimone, K., Moore, T., Gross, C. G. & Kastner, S. Representations of faces and body parts in macaque temporal cortex: a functional MRI study. Proc. Natl Acad. Sci. USA 102, 6996–7001 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Srihasam, K., Mandeville, J. B., Morocz, I. A., Sullivan, K. J. & Livingstone, M. S. Behavioral and anatomical consequences of early versus late symbol training in macaques. Neuron 73, 608–619 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsao, D. Y., Freiwald, W. A., Tootell, R. B. & Livingstone, M. S. A cortical region consisting entirely of face-selective cells. Science 311, 670–674 (2006). This paper was the first to target an fMRI-identified region of the IT cortex for single-unit recording and found that face patches contain an extremely high concentration of face-selective cells, opening the possibility to systematically dissect the organization and coding properties of these cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Freiwald, W. A. & Tsao, D. Y. Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science 330, 845–851 (2010). This paper found that face patches form a functional hierarchy, with a view-specific representation in face patch ML, a mirror-symmetric representation in face patch AL and a view-invariant representation in face patch AM.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Fisher, C. & Freiwald, W. A. Contrasting specializations for facial motion within the macaque face-processing system. Curr. Biol. 25, 261–266 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Landi, S. M. & Freiwald, W. A. Two areas for familiar face recognition in the primate brain. Science 357, 591–595 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ku, S.-P., Tolias, A. S., Logothetis, N. K. & Goense, J. fMRI of the face-processing network in the ventral temporal lobe of awake and anesthetized macaques. Neuron 70, 352–362 (2011).

    CAS  PubMed  Google Scholar 

  43. Tsao, D. Y., Schweers, N., Moeller, S. & Freiwald, W. A. Patches of face-selective cortex in the macaque frontal lobe. Nat. Neurosci. 11, 877–879 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Saleem, K. S., Tanaka, K. & Rockland, K. S. Specific and columnar projection from area TEO to TE in the macaque inferotemporal cortex. Cereb. Cortex 3, 454–464 (1993).

    CAS  PubMed  Google Scholar 

  45. Borra, E., Ichinohe, N., Sato, T., Tanifuji, M. & Rockland, K. S. Cortical connections to area TE in monkey: hybrid modular and distributed organization. Cereb. Cortex 20, 257–270 (2010).

    PubMed  Google Scholar 

  46. Moeller, S., Freiwald, W. A. & Tsao, D. Y. Patches with links: a unified system for processing faces in the macaque temporal lobe. Science 320, 1355–1359 (2008). This paper combined electrical microstimulation with simultaneous fMRI and found that face patches are strongly and specifically connected to each other.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Premereur, E., Taubert, J., Janssen, P., Vogels, R. & Vanduffel, W. Effective connectivity reveals largely independent parallel networks of face and body patches. Curr. Biol. 26, 3269–3279 (2016).

    CAS  PubMed  Google Scholar 

  48. Grimaldi, P., Saleem, K. S. & Tsao, D. Anatomical connections of the functionally defined “face patches” in the macaque monkey. Neuron 90, 1325–1342 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    CAS  PubMed  Google Scholar 

  50. Saleem, K. S., Miller, B. & Price, J. L. Subdivisions and connectional networks of the lateral prefrontal cortex in the macaque monkey. J. Comp. Neurol. 522, 1641–1690 (2014).

    PubMed  Google Scholar 

  51. Sato, T. et al. Object representation in inferior temporal cortex is organized hierarchically in a mosaic-like structure. J. Neurosci. 33, 16642–16656 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Rajimehr, R., Bilenko, N. Y., Vanduffel, W. & Tootell, R. B. Retinotopy versus face selectivity in macaque visual cortex. J. Cogn. Neurosci. 26, 2691–2700 (2014).

    PubMed  Google Scholar 

  53. Janssens, T., Zhu, Q., Popivanov, I. D. & Vanduffel, W. Probabilistic and single-subject retinotopic maps reveal the topographic organization of face patches in the macaque cortex. J. Neurosci. 34, 10156–10167 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Dubois, J., de Berker, A. O. & Tsao, D. Y. Single-unit recordings in the macaque face patch system reveal limitations of fMRI MVPA. J. Neurosci. 35, 2791–2802 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tang, S. et al. Complex pattern selectivity in macaque primary visual cortex revealed by large-scale two-photon imaging. Curr. Biol. 28, 38–48.e3 (2018).

    CAS  PubMed  Google Scholar 

  56. Bruce, V. & Young, A. Understanding face recognition. Br. J. Psychol. 77, 305–327 (1986).

    PubMed  Google Scholar 

  57. Young, M. P. & Yamane, S. Sparse population coding of faces in the inferotemporal cortex. Science 256, 1327–1331 (1992).

    CAS  PubMed  Google Scholar 

  58. Freiwald, W. A., Tsao, D. Y. & Livingstone, M. S. A face feature space in the macaque temporal lobe. Nat. Neurosci. 12, 1187–1196 (2009). This paper measured responses of face cells to a large, parametric set of cartoon faces and found that they detect the presence of subsets of parts such as eyes and measure subsets of features such as inter-eye distance, showing a characteristic ramp-shaped tuning.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Leopold, D. A., Bondar, I. V. & Giese, M. A. Norm-based face encoding by single neurons in the monkey inferotemporal cortex. Nature 442, 572–575 (2006).

    CAS  PubMed  Google Scholar 

  60. Tanaka, J. W. & Farah, M. J. Parts and wholes in face recognition. Q. J. Exp. Psychol. 46, 225–245 (1993).

    CAS  Google Scholar 

  61. Sinha, P. Recognizing complex patterns. Nat. Neurosci. 5, 1093–1097 (2002).

    CAS  PubMed  Google Scholar 

  62. Sinha, P. in International Workshop on Biologically Motivated Computer Vision. 249–262 (Springer).

  63. Viola, P. & Jones, M. Computer vision and pattern recognition, 2001. in Proceedings of the 2001 IEEE Computer Society Conference on. I-I (IEEE, 2001).

  64. Ohayon, S., Freiwald, W. A. & Tsao, D. Y. What makes a cell face selective? The importance of contrast. Neuron 74, 567–581 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Leibo, J. Z., Liao, Q., Anselmi, F., Freiwald, W. A. & Poggio, T. View-tolerant face recognition and Hebbian learning imply mirror-symmetric neural tuning to head orientation. Curr. Biol. 27, 62–67 (2017).

    CAS  PubMed  Google Scholar 

  66. Yildirim, I., Belledonne, M., Freiwald, W. & Tenenbaum, J. Efficient inverse graphics in biological face processing. Sci. Adv. 6, eaax5979 (2020).

    PubMed  PubMed Central  Google Scholar 

  67. Chang, L. & Tsao, D. Y. The code for facial identity in the primate brain. Cell 169, 1013–1028.e14 (2017). This paper revealed that face cells use a shape-based and appearance-based axis code to represent facial identity, and that this simple code could be used to reconstruct faces seen by monkeys with remarkable accuracy.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cootes, T. F., Edwards, G. J. & Taylor, C. J. in European Conference on Computer Vision. 484-498 (Springer, 1998).

  69. Phillips, P. J. et al. Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms. Proc. Natl Acad. Sci. USA 115, 6171–6176 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Krizhevsky, A., Sutskever, I. & Hinton, G. ImageNet classification with deep convolutional neural networks. Adv. Neur. Inf. Process. Syst. https://doi.org/10.1145/3065386 (2012).

    Article  Google Scholar 

  71. Yamins, D. L. et al. Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl Acad. Sci. USA 111, 8619–8624 (2014). This paper showed that units in a deep neural network trained to classify objects are predictive of neural responses in IT cortex and formalized the hypothesis that neural representations are equivalent if they are related by a linear transform.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J. & Hinton, G. Backpropagation and the brain. Nat. Rev. Neurosci. 21, 335–346 (2020).

    CAS  PubMed  Google Scholar 

  73. Kietzmann, T., McClure, P. & Kriegeskorte, N. Deep neural networks in computational neuroscience. bioRxiv https://doi.org/10.1101/133504 (2018).

  74. Chang, L., Egger, B., Vetter, T. & Tsao, D. Y. What computational model provides the best explanation of face representations in the primate brain? bioRxiv https://doi.org/10.1101/2020.06.07.111930 (2020).

  75. Higgins, I. et al. Unsupervised deep learning identifies semantic disentanglement in single inferotemporal neurons. arxiv https://arxiv.org/abs/2006.14304 (2020).

  76. Bashivan, P., Kar, K. & DiCarlo, J. J. Neural population control via deep image synthesis. Science https://doi.org/10.1126/science.aav9436 (2019).

    Article  PubMed  Google Scholar 

  77. Ponce, C. R. et al. Evolving images for visual neurons using a deep generative network reveals coding principles and neuronal preferences. Cell 177, 999–1009.e10 (2019). This paper used a generative deep network and a genetic algorithm to iteratively evolve optimal images for IT cells, including face cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Haile, T. M., Bohon, K. S., Romero, M. C. & Conway, B. R. Visual stimulus-driven functional organization of macaque prefrontal cortex. Neuroimage 188, 427–444 (2019).

    PubMed  Google Scholar 

  79. Barat, E., Wirth, S. & Duhamel, J.-R. Face cells in orbitofrontal cortex represent social categories. Proc. Natl Acad. Sci. USA 115, E11158–E11167 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hadj-Bouziane, F., Bell, A. H., Knusten, T. A., Ungerleider, L. G. & Tootell, R. B. Perception of emotional expressions is independent of face selectivity in monkey inferior temporal cortex. Proc. Natl Acad. Sci. USA 105, 5591–5596 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Furl, N., Hadj-Bouziane, F., Liu, N., Averbeck, B. B. & Ungerleider, L. G. Dynamic and static facial expressions decoded from motion-sensitive areas in the macaque monkey. J. Neurosci. 32, 15952–15962 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Marciniak, K., Atabaki, A., Dicke, P. W. & Thier, P. Disparate substrates for head gaze following and face perception in the monkey superior temporal sulcus. eLife https://doi.org/10.7554/eLife.03222 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. She, L. & Tsao, D.Y. Recordings from macaque face and body patches in the upper bank of the superior temporal sulcus reveal strong species selectivity (abstract 192.04) (Society for Neuroscience, 2017).

  84. Roy, A., Shepherd, S. V. & Platt, M. L. Reversible inactivation of pSTS suppresses social gaze following in the macaque (Macaca mulatta). Soc. Cogn. Affect. Neurosci. 9, 209–217 (2014).

    PubMed  Google Scholar 

  85. She, L. & Tsao, D.Y. Face coding in the macaque perirhinal face patch (abstract 307.12) (Society for Neuroscience, 2018).

  86. Park, S. H. et al. Functional subpopulations of neurons in a macaque face patch revealed by single-unit fMRI mapping. Neuron 95, 971–981.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Arcaro, M. J., Ponce, C. & Livingstone, M. The neurons that mistook a hat for a face. eLife https://doi.org/10.7554/eLife.53798 (2020). This paper challenged the notion that face cells respond only to face-like stimuli, reporting that they also respond to bodies if the body indicates a face should be located in the cell’s receptive field.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Inagaki, M. & Fujita, I. Reference frames for spatial frequency in face representation differ in the temporal visual cortex and amygdala. J. Neurosci. 31, 10371–10379 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Taubert, J., Goffaux, V., Van Belle, G., Vanduffel, W. & Vogels, R. The impact of orientation filtering on face-selective neurons in monkey inferior temporal cortex. Sci. Rep. 6, 21189 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Bao, P. & Tsao, D. Y. Representation of multiple objects in macaque category-selective areas. Nat. Commun. 9, 1774 (2018).

    PubMed  PubMed Central  Google Scholar 

  91. Sugita, Y. Face perception in monkeys reared with no exposure to faces. Proc. Natl Acad. Sci. USA 105, 394–398 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Goren, C. C., Sarty, M. & Wu, P. Y. Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics 56, 544–549 (1975).

    CAS  PubMed  Google Scholar 

  93. Johnson, M. H., Dziurawiec, S., Ellis, H. & Morton, J. Newborns’ preferential tracking of face-like stimuli and its subsequent decline. Cognition 40, 1–19 (1991).

    CAS  PubMed  Google Scholar 

  94. Valenza, E., Simion, F., Cassia, V. M. & Umiltà, C. Face preference at birth. J. Exp. Psychol. Hum. Percept. Perform. 22, 892 (1996).

    CAS  PubMed  Google Scholar 

  95. Bahrick, H. P., Bahrick, P. O. & Wittlinger, R. P. Fifty years of memory for names and faces: a cross-sectional approach. J. Exp. Psychol. Gen. 104, 54 (1975).

    Google Scholar 

  96. Yin, R. K. Looking at upside-down faces. J. Exp. Psychol. 81, 141 (1969).

    Google Scholar 

  97. Rosenfeld, S. A. & Van Hoesen, G. W. Face recognition in the rhesus monkey. Neuropsychologia 17, 503–509 (1979).

    CAS  PubMed  Google Scholar 

  98. Bruce, C. Face recognition by monkeys: absence of an inversion effect. Neuropsychologia 20, 515–521 (1982).

    CAS  PubMed  Google Scholar 

  99. Overman, W. H. Jr. & Doty, R. W. Hemispheric specialization displayed by man but not macaques for analysis of faces. Neuropsychologia 20, 113–128 (1982).

    PubMed  Google Scholar 

  100. Wright, A. A. & Roberts, W. A. Monkey and human face perception: inversion effects for human faces but not for monkey faces or scenes. J. Cogn. Neurosci. 8, 278–290 (1996).

    CAS  PubMed  Google Scholar 

  101. Moeller, S., Crapse, T., Chang, L. & Tsao, D. Y. The effect of face patch microstimulation on perception of faces and objects. Nat. Neurosci. 20, 743–752 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Gothard, K. M., Brooks, K. N. & Peterson, M. A. Multiple perceptual strategies used by macaque monkeys for face recognition. Anim. Cogn. 12, 155–167 (2009).

    PubMed  Google Scholar 

  103. Pascalis, O. & Bachevalier, J. Face recognition in primates: a cross-species study. Behav. Processes 43, 87–96 (1998).

    CAS  PubMed  Google Scholar 

  104. Rossion, B. & Taubert, J. What can we learn about human individual face recognition from experimental studies in monkeys? Vision Res. 157, 142–158 (2019).

    PubMed  Google Scholar 

  105. Parr, L. A., Heintz, M. & Pradhan, G. Rhesus monkeys (Macaca mulatta) lack expertise in face processing. J. Comp. Psychol. 122, 390–402 (2008).

    PubMed  PubMed Central  Google Scholar 

  106. Heywood, C. & Cowey, A. The role of the ‘face-cell’ area in the discrimination and recognition of faces by monkeys. Phil. Trans. R. Soc. Lond. B Biol. Sci. 335, 31–37 (1992).

    CAS  Google Scholar 

  107. Afraz, S.-R., Kiani, R. & Esteky, H. Microstimulation of inferotemporal cortex influences face categorization. Nature 442, 692–695 (2006). This study reported that microstimulation of face-selective sites in the inferotemporal cortex biases monkeys to judge an image as a face.

    CAS  PubMed  Google Scholar 

  108. Parvizi, J. et al. Electrical stimulation of human fusiform face-selective regions distorts face perception. J. Neurosci. 32, 14915–14920 (2012). This study reported that, when the fusiform face area was stimulated, a human patient reported perceived distortions in the faces of people in the room.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Schalk, G. et al. Facephenes and rainbows: causal evidence for functional and anatomical specificity of face and color processing in the human brain. Proc. Natl Acad. Sci. USA 114, 12285–12290 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Taubert, J., Wardle, S. G., Flessert, M., Leopold, D. A. & Ungerleider, L. G. Face pareidolia in the rhesus monkey. Curr. Biol. 27, 2505–2509.e2 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Haxby, J. V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001). This paper challenged the notion that face patches are specialized to process faces. It showed that different visual categories elicit widely distributed and overlapping responses across cortex and activity in face areas reliably distinguishes between different non-face categories.

    CAS  PubMed  Google Scholar 

  112. Sadagopan, S., Zarco, W. & Freiwald, W. A. A causal relationship between face-patch activity and face-detection behavior. eLife 6, e18558 (2017).

    PubMed  PubMed Central  Google Scholar 

  113. Shadlen, M. N. & Kiani, R. in Research and Perspectives in Neurosciences Vol. 18 27–46 (Springer, 2011).

  114. Shadlen, M. N. & Kiani, R. Decision making as a window on cognition. Neuron 80, 791–806 (2013).

    CAS  PubMed  Google Scholar 

  115. Kar, K., Kubilius, J., Schmidt, K., Issa, E. B. & DiCarlo, J. J. Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior. Nat. Neurosci. 22, 974 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Tang, H. et al. Recurrent computations for visual pattern completion. Proc. Natl Acad. Sci. USA 115, 8835–8840 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Schwiedrzik, C. M. & Freiwald, W. A. High-level prediction signals in a low-level area of the macaque face-processing hierarchy. Neuron 96, 89–97.e4 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Friston, K. The free-energy principle: a rough guide to the brain? Trends Cogn. Sci. 13, 293–301 (2009).

    PubMed  Google Scholar 

  119. Huang, Y. & Rao, R. P. Predictive coding. Wiley Interdiscip. Rev. Cogn. Sci. 2, 580–593 (2011).

    PubMed  Google Scholar 

  120. Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999). This landmark paper proposed a general model of the visual system as a predictive coding engine, with feedback pathways predicting visual input based on past experience and feedforward pathways conveying prediction errors. The scheme provides one model for the purpose of feedback within the face patch system.

    CAS  PubMed  Google Scholar 

  121. Fernández-Miranda, J. C., Rhoton, A. L. Jr. Kakizawa, Y., Choi, C. & Álvarez-Linera, J. The claustrum and its projection system in the human brain: a microsurgical and tractographic anatomical study. J. Neurosurg. 108, 764–774 (2008).

    PubMed  Google Scholar 

  122. Pearson, R., Brodal, P., Gatter, K. & Powell, T. The organization of the connections between the cortex and the claustrum in the monkey. Brain Res. 234, 435–441 (1982).

    CAS  PubMed  Google Scholar 

  123. Tanné-Gariépy, J., Boussaoud, D. & Rouiller, E. M. Projections of the claustrum to the primary motor, premotor, and prefrontal cortices in the macaque monkey. J. Comp. Neurol. 454, 140–157 (2002).

    PubMed  Google Scholar 

  124. Edelstein, L. & Denaro, F. The claustrum: a historical review of its anatomy, physiology, cytochemistry and functional significance. Pathology 104, 675–702 (2004).

    Google Scholar 

  125. Ettlinger, G. & Wilson, W. Cross-modal performance: behavioural processes, phylogenetic considerations and neural mechanisms. Behav. Brain Res. 40, 169–192 (1990).

    CAS  PubMed  Google Scholar 

  126. Sherk, H. in Sensory-Motor Areas and Aspects of Cortical Connectivity 467-499 (Springer, 1986).

  127. Crick, F. C. & Koch, C. What is the function of the claustrum? Philos. Trans. R. Soc. B Biol. Sci. 360, 1271–1279 (2005).

    Google Scholar 

  128. Tong, F., Nakayama, K., Vaughan, J. T. & Kanwisher, N. Binocular rivalry and visual awareness in human extrastriate cortex. Neuron 21, 753–759 (1998).

    CAS  PubMed  Google Scholar 

  129. Frässle, S., Sommer, J., Jansen, A., Naber, M. & Einhäuser, W. Binocular rivalry: frontal activity relates to introspection and action but not to perception. J. Neurosci. 34, 1738–1747 (2014).

    PubMed  PubMed Central  Google Scholar 

  130. Overgaard, M. & Fazekas, P. Can no-report paradigms extract true correlates of consciousness. Trends Cogn Sci 20, 241–242 (2016).

    PubMed  Google Scholar 

  131. Tsuchiya, N., Wilke, M., Frässle, S. & Lamme, V. A. No-report paradigms: extracting the true neural correlates of consciousness. Trends Cogn. Sci. 19, 757–770 (2015).

    PubMed  Google Scholar 

  132. Hesse, J. K. & Tsao, D. Y. Representation of conscious percept without report in the macaque face patch network. bioRxiv https://doi.org/10.1101/2020.04.22.047522 (2020).

  133. Desimone, R., Wessinger, M., Thomas, L. & Schneider, W. Attentional control of visual perception: cortical and subcortical mechanisms. Cold Spring Harb. Symp. Quant. Biol. 55, 963–971 (1990).

    CAS  PubMed  Google Scholar 

  134. Olshausen, B. A., Anderson, C. H. & Van Essen, D. C. A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J. Neurosci. 13, 4700–4719 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Robinson, D. L. & Petersen, S. E. The pulvinar and visual salience. Trends Neurosci. 15, 127–132 (1992).

    CAS  PubMed  Google Scholar 

  136. Saalmann, Y. B. & Kastner, S. Cognitive and perceptual functions of the visual thalamus. Neuron 71, 209–223 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Shipp, S. The brain circuitry of attention. Trends Cogn. Sci. 8, 223–230 (2004).

    PubMed  Google Scholar 

  138. Petersen, S. E., Robinson, D. L. & Morris, J. D. Contributions of the pulvinar to visual spatial attention. Neuropsychologia 25, 97–105 (1987).

    CAS  PubMed  Google Scholar 

  139. Wilke, M., Kagan, I. & Andersen, R. A. Effects of pulvinar inactivation on spatial decision-making between equal and asymmetric reward options. J. Cogn. Neurosci. 25, 1270–1283 (2013).

    PubMed  Google Scholar 

  140. Wilke, M., Turchi, J., Smith, K., Mishkin, M. & Leopold, D. A. Pulvinar inactivation disrupts selection of movement plans. J. Neurosc. 30, 8650–8659 (2010).

    CAS  Google Scholar 

  141. Saalmann, Y. B., Pinsk, M. A., Wang, L., Li, X. & Kastner, S. The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337, 753–756 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Arrington, C. M., Carr, T. H., Mayer, A. R. & Rao, S. M. Neural mechanisms of visual attention: object-based selection of a region in space. J. Cogn. Neurosci. 12, 106–117 (2000).

    PubMed  Google Scholar 

  143. Cerf, M., Frady, E. P. & Koch, C. Faces and text attract gaze independent of the task: experimental data and computer model. J. Vision https://doi.org/10.1167/9.12.10 (2009).

  144. Maunsell, J. H. & Treue, S. Feature-based attention in visual cortex. Trends Neurosci. 29, 317–322 (2006).

    CAS  PubMed  Google Scholar 

  145. Calder, A. J. & Nummenmaa, L. Face cells: separate processing of expression and gaze in the amygdala. Curr. Biol. 17, R371–R372 (2007).

    CAS  PubMed  Google Scholar 

  146. Fried, I., MacDonald, K. A. & Wilson, C. L. Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron 18, 753–765 (1997).

    CAS  PubMed  Google Scholar 

  147. Kuraoka, K. & Nakamura, K. Responses of single neurons in monkey amygdala to facial and vocal emotions. J. Neurophysiol. 97, 1379–1387 (2007).

    PubMed  Google Scholar 

  148. Nakamura, K., Mikami, A. & Kubota, K. Activity of single neurons in the monkey amygdala during performance of a visual discrimination task. J. Neurophysiol. 67, 1447–1463 (1992).

    CAS  PubMed  Google Scholar 

  149. Rutishauser, U. et al. Single-unit responses selective for whole faces in the human amygdala. Curr. Biol. 21, 1654–1660 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Sanghera, M., Rolls, E. & Roper-Hall, A. Visual responses of neurons in the dorsolateral amygdala of the alert monkey. Exp. Neurol. 63, 610–626 (1979).

    CAS  PubMed  Google Scholar 

  151. Wang, S. et al. Neurons in the human amygdala selective for perceived emotion. Proc. Natl Acad. Sci. USA 111, E3110–E3119 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Adolphs, R., Tranel, D., Damasio, H. & Damasio, A. Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372, 669–672 (1994).

    CAS  PubMed  Google Scholar 

  153. Minxha, J. et al. Fixations gate species-specific responses to free viewing of faces in the human and macaque amygdala. Cell Rep. 18, 878–891 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Sigala, R., Logothetis, N. K. & Rainer, G. Own-species bias in the representations of monkey and human face categories in the primate temporal lobe. J. Neurophysiol. 105, 2740–2752 (2011).

    CAS  PubMed  Google Scholar 

  155. Mosher, C. P., Zimmerman, P. E. & Gothard, K. M. Neurons in the monkey amygdala detect eye contact during naturalistic social interactions. Curr. Biol. 24, 2459–2464 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Taubert, J. et al. Amygdala lesions eliminate viewing preferences for faces in rhesus monkeys. Proc. Natl Acad. Sci. USA 115, 8043–8048 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Fahy, F. L., Riches, I. P. & Brown, M. W. Neuronal activity related to visual recognition memory: long-term memory and the encoding of recency and familiarity information in the primate anterior and medial inferior temporal and rhinal cortex. Exp. Brain Res. 96, 457–472 (1993).

    CAS  PubMed  Google Scholar 

  158. Kornblith, S. & Tsao, D. Y. How thoughts arise from sights: inferotemporal and prefrontal contributions to vision. Curr. Opin. Neurobiol. 46, 208–218 (2017).

    CAS  PubMed  Google Scholar 

  159. O’Craven, K. M. & Kanwisher, N. Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J. Cogn. Neurosci. 12, 1013–1023 (2000).

    PubMed  Google Scholar 

  160. Wallis, J. D. Orbitofrontal cortex and its contribution to decision-making. Annu. Rev. Neurosci. 30, 31–56 (2007).

    CAS  PubMed  Google Scholar 

  161. Romanski, L. M. & Diehl, M. M. Neurons responsive to face-view in the primate ventrolateral prefrontal cortex. Neuroscience 189, 223–235 (2011).

    CAS  PubMed  Google Scholar 

  162. Lafer-Sousa, R. & Conway, B. R. Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex. Nat. Neurosci. 16, 1870–1878 (2013). This paper showed that colour-selective regions are adjacent to face patches and further reported multiple coarse eccentricity maps in IT.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Chang, L., Bao, P. & Tsao, D. Y. The representation of colored objects in macaque color patches. Nat. Commun. 8, 2064 (2017).

    PubMed  PubMed Central  Google Scholar 

  164. Kornblith, S., Cheng, X., Ohayon, S. & Tsao, D. Y. A network for scene processing in the macaque temporal lobe. Neuron 79, 766–781 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Kumar, S., Popivanov, I. D. & Vogels, R. Transformation of visual representations across ventral stream body-selective patches. Cereb. Cortex 29, 215–229 (2019). This study showed that neural responses to bodies in body-selective patches become more view-invariant as one moves more anterior in the cortical hierarchy.

    PubMed  Google Scholar 

  166. Popivanov, I. D., Jastorff, J., Vanduffel, W. & Vogels, R. Stimulus representations in body-selective regions of the macaque cortex assessed with event-related fMRI. Neuroimage 63, 723–741 (2012).

    PubMed  Google Scholar 

  167. Young, A. W., Hellawell, D. & Hay, D. C. Configurational information in face perception. Perception 42, 1166–1178 (2013).

    PubMed  Google Scholar 

  168. Valentine, T. Upside-down faces: a review of the effect of inversion upon face recognition. Br. J. Psychol. 79, 471–491 (1988).

    PubMed  Google Scholar 

  169. Parr, L., Winslow, J. & Hopkins, W. Is the inversion effect in rhesus monkeys face-specific? Anim. Cogn. 2, 123–129 (1999).

    Google Scholar 

  170. Taubert, J., Van Belle, G., Vanduffel, W., Rossion, B. & Vogels, R. The effect of face inversion for neurons inside and outside fMRI-defined face-selective cortical regions. J. Neurophysiol. 113, 1644–1655 (2014).

    PubMed  PubMed Central  Google Scholar 

  171. Thompson, P. Margaret Thatcher: a new illusion. Perception 9, 483–484 (1980).

    CAS  PubMed  Google Scholar 

  172. Adachi, I., Chou, D. P. & Hampton, R. R. Thatcher effect in monkeys demonstrates conservation of face perception across primates. Curr. Biol. 19, 1270–1273 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Taubert, J., Van Belle, G., Vanduffel, W., Rossion, B. & Vogels, R. Neural correlate of the thatcher face illusion in a monkey face-selective patch. J. Neurosci. 35, 9872–9878 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Sugase-Miyamoto, Y., Matsumoto, N., Ohyama, K. & Kawano, K. Face inversion decreased information about facial identity and expression in face-responsive neurons in macaque area TE. J. Neurosci. 34, 12457–12469 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Tan, C. & Poggio, T. Neural tuning size in a model of primate visual processing accounts for three key markers of holistic face processing. PloS ONE 11, e0150980 (2016).

    PubMed  PubMed Central  Google Scholar 

  176. Riesenhuber, M. & Poggio, T. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019 (1999).

    CAS  PubMed  Google Scholar 

  177. Leibo, J. Z., Mutch, J. & Poggio, T. Why the brain separates face recognition from object recognition. Adv. Neural. Inf. Process. Syst. https://doi.org/10.5555/2986459.2986539 (2011).

    Article  Google Scholar 

  178. Hung, C.-C. et al. Functional mapping of face-selective regions in the extrastriate visual cortex of the marmoset. J. Neurosci. 35, 1160–1172 (2015). This paper demonstrated that marmosets also have at least six face-selective patches.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Cuaya, L. V., Hernández-Pérez, R. & Concha, L. Our faces in the dog’s brain: Functional imaging reveals temporal cortex activation during perception of human faces. PLoS ONE 11, e0149431 (2016).

    PubMed  PubMed Central  Google Scholar 

  180. Khuvis, S. et al. Face-selective units in human ventral temporal cortex reactivate during free recall. bioRxiv https://doi.org/10.1101/487686 (2018).

  181. Kendrick, K. & Baldwin, B. Cells in temporal cortex of conscious sheep can respond preferentially to the sight of faces. Science 236, 448–450 (1987).

    CAS  PubMed  Google Scholar 

  182. Coulon, M., Deputte, B. L., Heyman, Y. & Baudoin, C. Individual recognition in domestic cattle (Bos taurus): evidence from 2D-images of heads from different breeds. PLoS ONE 4, e4441 (2009).

    PubMed  PubMed Central  Google Scholar 

  183. Stephan, C., Wilkinson, A. & Huber, L. Have we met before? Pigeons recognise familiar human faces. Avian Biol. Res. 5, 75–80 (2012).

    Google Scholar 

  184. Newport, C., Wallis, G., Reshitnyk, Y. & Siebeck, U. E. Discrimination of human faces by archerfish (Toxotes chatareus). Sci. Rep. 6, 27523 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Tibbetts, E. A. Visual signals of individual identity in the wasp Polistes fuscatus. Proc. Biol. Sci. 269, 1423–1428 (2002).

    PubMed  PubMed Central  Google Scholar 

  186. Van der Velden, J., Zheng, Y., Patullo, B. W. & Macmillan, D. L. Crayfish recognize the faces of fight opponents. PLoS ONE 3, e1695 (2008).

    PubMed  PubMed Central  Google Scholar 

  187. Rajimehr, R., Young, J. C. & Tootell, R. B. An anterior temporal face patch in human cortex, predicted by macaque maps. Proc. Natl Acad. Sci. USA 106, 1995–2000 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Grill-Spector, K., Knouf, N. & Kanwisher, N. The fusiform face area subserves face perception, not generic within-category identification. Nat. Neurosci. 7, 555–562 (2004).

    CAS  PubMed  Google Scholar 

  189. Fox, C. J., Moon, S. Y., Iaria, G. & Barton, J. J. The correlates of subjective perception of identity and expression in the face network: an fMRI adaptation study. Neuroimage 44, 569–580 (2009).

    PubMed  Google Scholar 

  190. Anzellotti, S., Fairhall, S. L. & Caramazza, A. Decoding representations of face identity that are tolerant to rotation. Cereb. Cortex 24, 1988–1995 (2014).

    PubMed  Google Scholar 

  191. Axelrod, V. & Yovel, G. Successful decoding of famous faces in the fusiform face area. PLoS ONE 10, e0117126 (2015).

    PubMed  PubMed Central  Google Scholar 

  192. Yovel, G. & Freiwald, W. A. Face recognition systems in monkey and human: are they the same thing? F1000prime Rep. 5, 10 (2013).

    PubMed  PubMed Central  Google Scholar 

  193. Pitcher, D., Dilks, D. D., Saxe, R. R., Triantafyllou, C. & Kanwisher, N. Differential selectivity for dynamic versus static information in face-selective cortical regions. Neuroimage 56, 2356–2363 (2011).

    PubMed  Google Scholar 

  194. Haxby, J. V., Hoffman, E. A. & Gobbini, M. I. The distributed human neural system for face perception. Trends Cogn. Sci. 4, 223–233 (2000).

    CAS  PubMed  Google Scholar 

  195. Rotshtein, P., Henson, R. N., Treves, A., Driver, J. & Dolan, R. J. Morphing Marilyn into Maggie dissociates physical and identity face representations in the brain. Nat. Neurosci. 8, 107–113 (2005).

    CAS  PubMed  Google Scholar 

  196. Polosecki, P. et al. Faces in motion: selectivity of macaque and human face processing areas for dynamic stimuli. J. Neurosci. 33, 11768–11773 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Dehaene, S. et al. How learning to read changes the cortical networks for vision and language. Science 330, 1359–1364 (2010). This paper demonstrated an important role for experience in driving the formation of category-selective regions in ventral temporal cortex. Illiterate adults develop selective activation for words in the left fusiform gyrus after they learn to read and this induces a competition with faces in this region.

    CAS  PubMed  Google Scholar 

  198. Deen, B. et al. Organization of high-level visual cortex in human infants. Nat. Commun. 8, 13995 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Kolster, H., Janssens, T., Orban, G. A. & Vanduffel, W. The retinotopic organization of macaque occipitotemporal cortex anterior to V4 and caudoventral to the middle temporal (MT) cluster. J. Neurosci. 34, 10168–10191 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Arcaro, M. J. & Livingstone, M. S. A hierarchical, retinotopic proto-organization of the primate visual system at birth. eLife 6, e26196 (2017).

    PubMed  PubMed Central  Google Scholar 

  201. Srihasam, K., Vincent, J. L. & Livingstone, M. S. Novel domain formation reveals proto-architecture in inferotemporal cortex. Nat. Neurosci. 17, 1776–1783 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Hasson, U., Harel, M., Levy, I. & Malach, R. Large-scale mirror-symmetry organization of human occipito-temporal object areas. Neuron 37, 1027–1041 (2003).

    CAS  PubMed  Google Scholar 

  203. Levy, I., Hasson, U., Avidan, G., Hendler, T. & Malach, R. Center–periphery organization of human object areas. Nat. Neurosci. 4, 533 (2001).

    CAS  PubMed  Google Scholar 

  204. Erickson, C. A., Jagadeesh, B. & Desimone, R. Clustering of perirhinal neurons with similar properties following visual experience in adult monkeys. Nat. Neurosci. 3, 1143–1148 (2000).

    CAS  PubMed  Google Scholar 

  205. van den Hurk, J., Van Baelen, M. & Op de Beeck, H. P. Development of visual category selectivity in ventral visual cortex does not require visual experience. Proc. Natl Acad. Sci. USA 114, E4501–E4510 (2017).

    PubMed  PubMed Central  Google Scholar 

  206. Op de Beeck, H. P., Pillet, I. & Ritchie, J. B. Factors determining where category-selective areas emerge in visual cortex. Trends Cogn. Sci. 23, 784–797 (2019). This review discusses experience-related factors that determine the location of category-selective areas such as face patches.

    PubMed  Google Scholar 

  207. Ratan Murty, N. A. et al. Visual experience is not necessary for the development of face-selectivity in the lateral fusiform gyrus. Proc. Natl Acad. Sci. USA 117, 23011–23020 (2020).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH (R01-EY030650), the Howard Hughes Medical Institute and the Tianqiao and Chrissy Chen Institute for Neuroscience at Caltech. We thank M. Livingstone and A. Varshavsky and members of the Tsao lab for helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Doris Y. Tsao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Face patch

A cortical region in the macaque brain that responds selectively to viewed faces. Besides the six canonical face patches in each hemisphere that are found in the inferotemporal cortex, face patches have been reported outside of this cortical region such as in the upper bank of the superior temporal sulcus, the perirhinal cortex and the prefrontal cortex.

Prosopagnosia

A cognitive disorder in which the ability to recognize faces is impaired while other forms of visual processing remain intact. Prosopagnosia, also called face blindness, may be present from birth or acquired as a result of brain damage.

Grandmother cells

Hypothetical cells that respond selectively to only one concept (such as one’s grandmother) and thus implement an extreme case of sparse coding.

Inferotemporal cortex

A cortical region in the inferior convexity of the temporal lobe of the macaque brain thought to be homologous to the human ventral temporal cortex. The inferotemporal cortex is part of the ventral visual stream and important for object recognition.

Fusiform face area

(FFA). A cortical region in the human lateral fusiform gyrus that responds selectively to viewed faces. The FFA has been suggested to be homologous to the macaque middle face patches.

Multi-voxel pattern analysis

An analysis method for fMRI data that tries to infer what a population of voxels encodes by decoding the stimuli or conditions on different trials from the population response vector.

Holistic processing

A mode of processing in which the brain obligatorily recognizes a face as whole, postulated to occur due to several psychophysical phenomena, including the inversion effect, the whole-part effect and the composite effect; in each case, the same set of parts is not identified appropriately unless arranged to form an upright face.

Ramp-shaped tuning

A coding scheme in which the response of a neuron increases monotonically as a feature is changed in one direction.

Binocular rivalry

The phenomenon that, if two incompatible inputs are presented to the left and right eyes, respectively, rather than seeing a superimposition of the two, one’s perception stochastically alternates between the two images.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hesse, J.K., Tsao, D.Y. The macaque face patch system: a turtle’s underbelly for the brain. Nat Rev Neurosci 21, 695–716 (2020). https://doi.org/10.1038/s41583-020-00393-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-020-00393-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing