Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Diverse motives for human curiosity


Curiosity—our desire to know—is a fundamental drive in human behaviour, but its mechanisms are poorly understood. A classical question concerns the curiosity motives. What drives individuals to become curious about some but not other sources of information?1 Here we show that curiosity about probabilistic events depends on multiple aspects of the distribution of these events. Participants (n = 257) performed a task in which they could demand advance information about only one of two randomly selected monetary prizes that contributed to their income. Individuals differed markedly in the extent to which they requested information as a function of the ex ante uncertainty or ex ante value of an individual prize. This heterogeneity was not captured by theoretical models describing curiosity as a desire to learn about the total rewards of a situation2,3. Instead, it could be explained by an extended model that allowed for attribute-specific anticipatory utility—the savouring of individual components of the eventual reward—and postulates that this utility increased nonlinearly with the certainty of receiving the reward. Parameter values fitting individual choices were consistent for information about gains or losses, suggesting that attribute-specific anticipatory utility captures fundamental heterogeneity in the determinants of curiosity.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The task.
Fig. 2: Decision weights in the gain and loss domains.
Fig. 3: Individual choice curves for observing decisions.
Fig. 4: Correspondence between reaction time and choices.

Data availability

Requests for the data can be sent via email to the corresponding author.

Code availability

Requests for the code used for all analyses can be sent via email to the corresponding author.


  1. Berlyne, D. E. A theory of human curiosity. Br. J. Psychol. 45, 180–191 (1954).

    CAS  PubMed  Google Scholar 

  2. Kreps, D. M. & Porteus, E. L. Temporal resolution of uncertainty and dynamic choice theory. Econometrica 46, 185–200 (1978).

    Article  Google Scholar 

  3. Iigaya, K., Story, G. W., Kurth-Nelson, Z., Dolan, R. J. & Dayan, P. The modulation of savouring by prediction error and its effects on choice. eLife 5, e13747 (2016).

    Article  Google Scholar 

  4. Loewenstein, G. The psychology of curiosity: a review and reinterpretation. Psychol. Bull. 116, 75–98 (1994).

    Article  Google Scholar 

  5. Gottlieb, J. & Oudeyer, P. Y. Toward a neuroscience of active sampling and curiosity. Nat. Rev. Neurosci. 19, 758–770 (2018).

    CAS  Article  Google Scholar 

  6. Gottlieb, J., Oudeyer, P. Y., Lopes, M. & Baranes, A. Information seeking, curiosity and attention: computational and empirical mechanisms. Trends Cogn. Sci. 17, 585–593 (2013).

    Article  Google Scholar 

  7. Kidd, C. & Hayden, B. Y. The psychology and neuroscience of curiosity. Neuron 88, 449–460 (2015).

    CAS  Article  Google Scholar 

  8. Loewenstein, G. & Molnar, A. The renaissance of belief-based utility in economics. Nat. Hum. Behav. 2, 166–167 (2018).

    Article  Google Scholar 

  9. Vasconcelos, M., Monteiro, T. & Kacelnik, A. Irrational choice and the value of information. Sci. Rep. 5, 13874 (2015).

    Article  Google Scholar 

  10. Eliaz, K. & Schotter, A. Experimental testing of intrinsic preferences for noninstrumental information. Am. Econ. Rev. 97, 166–169 (2007).

    Article  Google Scholar 

  11. Zentall, T. R. & Stagner, J. P. Do pigeons prefer information in the absence of differential reinforcement? Learn. Behav. 40, 465–475 (2012).

    Article  Google Scholar 

  12. Bromberg-Martin, E. S. & Hikosaka, O. Midbrain dopamine neurons signal preference for advance information about upcoming rewards. Neuron 63, 119–126 (2009).

    CAS  Article  Google Scholar 

  13. Blanchard, T. C., Hayden, B. Y. & Bromberg-Martin, E. S. Orbitofrontal cortex uses distinct codes for different choice attributes in decisions motivated by curiosity. Neuron 85, 602–614 (2015).

    CAS  Article  Google Scholar 

  14. Baranes, A. F., Oudeyer, P. Y. & Gottlieb, J. Eye movements encode epistemic curiosity in human observers. Vis. Res. 117, 81–90 (2015).

    Article  Google Scholar 

  15. Daddaoua, N., Lopes, M. & Gottlieb, J. Intrinsically motivated oculomotor exploration guided by uncertainty reduction and conditioned reinforcement in non-human primates. Sci. Rep. 6, 20202 (2016).

    CAS  Article  Google Scholar 

  16. Gruber, M. J., Gelman, B. D. & Ranganath, C. States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit. Neuron 84, 486–496 (2014).

    CAS  Article  Google Scholar 

  17. Cohen, J. D., McClure, S. M. & Yu, A. J. Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration. Phil. Trans. R. Soc. Lond. B 362, 933–942 (2007).

    Article  Google Scholar 

  18. Loewenstein, G. Anticipation and the valuation of delayed consumption. Econ. J. 97, 666–684 (1987).

    Article  Google Scholar 

  19. Caplin, A. & Leahy, J. Psychological expected utility theory and anticipatory feelings. Q. J. Econ. 116, 55–79 (2001).

    Article  Google Scholar 

  20. Kahnt, T., Park, S. Q., Haynes, J. D. & Tobler, P. N. Disentangling neural representations of value and salience in the human brain. Proc. Natl Acad. Sci. USA 111, 5000–5005 (2014).

    CAS  Article  Google Scholar 

  21. Carver, C. S. & White, T. L. Behavioral Avoidance/Inhibition (BIS/BAS) Scales (Measurement Instrument Database for the Social Sciences, 2013).

  22. Gard, D. E., Gard, M. G., Kring, A. M. & John, O. P. Anticipatory and consummatory components of the experience of pleasure: a scale development study. J. Res. Pers. 50, 1086–1102 (2006).

    Article  Google Scholar 

  23. Foa, E. B. et al. The obsessive–compulsive inventory: development and validation of a short version. Psychol. Assess. 14, 485–496 (2002).

    Article  Google Scholar 

  24. Spielberger, C. D. Manual for the State-Trait Anxiety Inventory (Mind Garden, 1983).

  25. Radloff, L. S. The CES-D scale: a self-report depression scale for research in the general population. Appl. Psych. Meas. 1, 385–401 (1977).

    Article  Google Scholar 

  26. Litman, J. A. Interest and deprivation factors of epistemic curiosity. Pers. Individ. Dif. 44, 1585–1595 (2008).

    Article  Google Scholar 

  27. Litman, J. A. & Spielberger, C. D. Measuring epistemic curiosity and its diversive and specific components. J. Pers. Assess. 80, 75–86 (2003).

    Article  Google Scholar 

  28. Blais, A.-R. & Weber, E. U. A domain-specific risk-taking (DOSPERT) scale for adult populations. Judgm. Decis. Mak. 1, 33–47 (2006).

    Google Scholar 

  29. Van Lieshout, L. L. F., Vandenbroucke, A. R. E., Müller, N. C. J., Cools, R. & de Lange, F. P. Induction and relief of curiosity elicit parietal and frontal activity. J. Neurosci. 38, 2579–2588 (2018).

    CAS  Article  Google Scholar 

  30. Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P. & Pezzulo, G. Active inference: a process theory. Neural Comput. 29, 1–49 (2017).

    Article  Google Scholar 

  31. Anderson, B. The attention habit: how reward learning shapes attentional selection. Ann. NY Acad. Sci. 1369, 24–39 (2016).

    Article  Google Scholar 

  32. Sharot, T. The optimism bias. Curr. Biol. 21, 941–945 (2011).

    Article  Google Scholar 

  33. Barbaro, L., Peelen, M. V. & Hickey, C. Valence, not utility, underlies reward-driven prioritization in human vision. J. Neurosci. 37, 10438–10450 (2017).

    CAS  Article  Google Scholar 

  34. Morvan, C. & Maloney, L. Human visual search does not maximize the post-saccadic probability of identifying targets. PLoS Comput. Biol. 8, e1002342 (2012).

    CAS  Article  Google Scholar 

  35. Hunt, L. T., Rutledge, R. B., Malalasekera, W. M., Kennerley, S. W. & Dolan, R. J. Approach-induced biases in human information sampling. PLoS Biol. 14, e2000638 (2016).

    Article  Google Scholar 

  36. Sugrue, L. P., Corrado, G. S. & Newsome, W. T. Choosing the greater of two goods: neural currencies for valuation and decision making. Nat. Rev. Neurosci. 6, 363–375 (2005).

    CAS  Article  Google Scholar 

  37. Kable, J. W. & Glimcher, P. W. The neurobiology of decision: consensus and controversy. Neuron 63, 733–745 (2009).

    CAS  Article  Google Scholar 

  38. Schultz, W. et al. Explicit neural signals reflecting reward uncertainty. Phil. Trans. R. Soc. Lond. B 363, 3801–3811 (2008).

    Article  Google Scholar 

  39. O’Neill, M. & Schultz, W. Coding of reward risk by orbitofrontal neurons is mostly distinct from coding of reward value. Neuron 68, 789–800 (2010).

    Article  Google Scholar 

  40. Monosov, I. E. & Hikosaka, O. Selective and graded coding of reward uncertainty by neurons in the primate anterodorsal septal region. Nat. Neurosci. 16, 756–762 (2013).

    CAS  Article  Google Scholar 

  41. Monosov, I. E., Leopold, D. A. & Hikosaka, O. Neurons in the primate medial basal forebrain signal combined information about reward uncertainty, value, and punishment anticipation. J. Neurosci. 35, 7443–7459 (2015).

    CAS  Article  Google Scholar 

  42. Levy, I., Lazzaro, S. C., Rutledge, R. B. & Glimcher, P. W. Choice from non-choice: predicting consumer preferences from blood oxygenation level-dependent signals obtained during passive viewing. J. Neurosci. 31, 118–125 (2011).

    CAS  Article  Google Scholar 

  43. Zajkowski, W. K., Kossut, M. & Wilson, R. C. A causal role for right frontopolar cortex in directed, but not random, exploration. eLife 6, e27430 (2017).

    Article  Google Scholar 

  44. Wilson, R. C. & Niv, Y. Inferring relevance in a changing world. Front. Hum. Neurosci. 5, 189 (2011).

    PubMed  Google Scholar 

  45. Bennett, D., Bode, S., Brydevall, M., Warren, H. & Murawski, C. Intrinsic valuation of information in decision making under uncertainty. PLoS Comp. Biol. 12, e1005020 (2016).

    Article  Google Scholar 

  46. Fritz, C. O., Morris, P. E. & Richler, J. J. Effect size estimates: current use, calculations, and interpretation. J. Exp. Psychol. Gen. 141, 2–18 (2011).

    Article  Google Scholar 

  47. DiCiccio, T. J. & Efron, B. Boostrap confidence intervals. Stat. Sci 11, 189–228 (1996).

    Article  Google Scholar 

  48. Shadlen, M. N., Hanks, T. D., Churchland, A. K., Kiani, R. & Yang, T. The speed and accuracy of a simple perceptual decision: a mathematical primer. in Bayesian Brain: Probabilistic Approaches to Neural Coding (eds Doya, K. et al.) Ch. 10 (MIT Press, 2006).

Download references


The work was supported by a Human Frontiers Cross-Disciplinary Fellowship (to A.B.), Presidential Scholars in Science and Society Seed Grant at Columbia University (to M.W. and J.G.), Research Initiatives in Science and Engineering Seed Grant at Columbia University (to M.W. and J.G.), National Science Foundation grant SES-1426168 (to M.W.) and the Cognitive and Behavioral Economics Initiative at Columbia University (to S.R.). We thank M. Jameson and J. Capaldi for expert administrative assistance. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations



J.G. designed the experiment. K.K., S.R. and A.B. implemented the task and collected the data. K.K. analysed the data. M.W. wrote the computational model. K.K., S.R., M.W. and J.G. interpreted the results and wrote the paper.

Corresponding author

Correspondence to Kenji Kobayashi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4, Supplementary references, Supplementary Figs. 1–5, and Supplementary Tables 1–4.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, K., Ravaioli, S., Baranès, A. et al. Diverse motives for human curiosity. Nat Hum Behav 3, 587–595 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing