Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regulation of evidence accumulation by pupil-linked arousal processes


Effective decision-making requires integrating evidence over time. For simple perceptual decisions, previous work suggests that humans and animals can integrate evidence over time, but not optimally. This suboptimality could arise from sources including neuronal noise, weighting evidence unequally over time (that is, the ‘integration kernel’), previous trial effects and an overall bias. Here, using an auditory evidence accumulation task in humans, we report that people exhibit all four suboptimalities, some of which covary across the population. Pupillometry shows that only noise and the integration kernel are related to the change in pupil response. Moreover, these two different suboptimalities were related to different aspects of the pupil signal, with the individual differences in pupil response associated with individual differences in the integration kernel, while trial-by-trial fluctuations in pupil response were associated with trial-by-trial fluctuations in noise. These results suggest that different suboptimalities relate to distinct pupil-linked processes, possibly related to tonic and phasic norepinephrine activity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Basic behaviour of 108 participants.
Fig. 2: Regression model.
Fig. 3: Interaction between suboptimalities across participants.
Fig. 4: Interaction between pupil change and integration behaviour across participants.
Fig. 5: Trial-by-trial interaction between pupil change and integration behaviour.
Fig. 6: Bounded DDM fits and pupil change.

Code availability

Experiment code was created with Psychtoolbox-3 and custom MATLAB code. All behavioural and pupil analyses were created with custom MATLAB and R code. All code can be found at Code for fitting the DDM with sticky bound1,41 is provided at

Data availability

The datasets generated and analysed during the current study are available from the corresponding author upon reasonable request.


  1. 1.

    Brunton, B. W., Botvinick, M. M. & Brody, C. D. Rats and humans can optimally accumulate evidence for decision-making. Science 340, 95–98 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    Erlich, J. C., Brunton, B. W., Duan, C. A., Hanks, T. D. & Brody, C. D. Distinct effects of prefrontal and parietal cortex inactivations on an accumulation of evidence task in the rat. eLife 4, e05457 (2015).

    Article  Google Scholar 

  3. 3.

    Katz, L. N., Yates, J. L., Pillow, J. W. & Huk, A. C. Dissociated functional significance of decision-related activity in the primate dorsal stream. Nature 535, 285–288 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Yates, J. L., Park, I. M., Katz, L. N., Pillow, J. W. & Huk, A. C. Functional dissection of signal and noise in MT and LIP during decision-making. Nat. Neurosci. 20, 1285–1292 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    Newsome, W. T. & Pare, E. B. A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J. Neurosci. 8, 2201–2211 (1988).

    CAS  Article  Google Scholar 

  6. 6.

    Hanks, T. D. et al. Distinct relationships of parietal and prefrontal cortices to evidence accumulation. Nature 520, 220–223 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Gold, J. I. & Shadlen, M. N. Neural computations that underlie decisions about sensory stimuli. Trends Cogn. Sci. 5, 10–16 (2001).

    Article  Google Scholar 

  8. 8.

    Drugowitsch, J., Wyart, V., Devauchelle, A.-D. & Koechlin, E. Computational precision of mental inference as critical source of human choice suboptimality. Neuron 92, 1398–1411 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Faisal, A. A., Selen, L. P. & Wolpert, D. M. Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    Ma, W. J., Beck, J. M., Latham, P. E. & Pouget, A. Bayesian inference with probabilistic population codes. Nat. Neurosci. 9, 1432–1438 (2006).

    CAS  Article  Google Scholar 

  11. 11.

    Beck, J. M., Ma, W. J., Pitkow, X., Latham, P. E. & Pouget, A. Not noisy, just wrong: the role of suboptimal inference in behavioral variability. Neuron 74, 30–39 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    Smith, P. L. & Ratcliff, R. Psychology and neurobiology of simple decisions. Trends Neurosci. 27, 161–168 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    Osborne, L. C, Lisberger, S. G. & Bialek, W. A sensory source for motor variation. Nature 437, 412–416 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    Kaufman, M. T. & Churchland, A. K. Cognitive neuroscience: sensory noise drives bad decisions. Nature 496, 172–173 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    Sutton, R. S. & Barto, A. G. Introduction to Reinforcement Learning (MIT Press, Cambridge, 1998).

  16. 16.

    Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B. & Dolan, R. J. Cortical substrates for exploratory decisions in humans. Nature 441, 876–879 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    Griffiths, T. L. & Tenenbaum, J. B. Optimal predictions in everyday cognition. Psychol. Sci. 17, 767–773 (2006).

    Article  Google Scholar 

  18. 18.

    Cheadle, S. et al. Adaptive gain control during human perceptual choice. Neuron 81, 1429–1441 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Wyart, V., Myers, N. E. & Summerfield, C. Neural mechanisms of human perceptual choice under focused and divided attention. J. Neurosci. 35, 3485–3498 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Abrahamyan, A., Silva, L. L., Dakin, S. C., Carandini, M. & Gardner, J. L. Adaptable history biases in human perceptual decisions. Proc. Natl Acad. Sci. USA 113, E3548–E3557 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Urai, A. E., Braun, A. & Donner, T. H. Pupil-linked arousal is driven by decision uncertainty and alters serial choice bias. Nat. Commun. 8, 14637 (2017).

    Article  Google Scholar 

  22. 22.

    Barraclough, D. J., Conroy, M. L. & Lee, D. Prefrontal cortex and decision making in a mixed-strategy game. Nat. Neurosci. 7, 404–410 (2004).

    CAS  Article  Google Scholar 

  23. 23.

    Akrami, A., Kopec, C. D., Diamond, M. E. & Brody, C. D. Posterior parietal cortex represents sensory history and mediates its effects on behaviour. Nature 554, 368–372 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    Joshi, S., Li, Y., Kalwani, R. M. & Gold, J. I. Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron 89, 221–234 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Reimer, J. et al. Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nat. Commun. 7, 13289 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005).

    CAS  Article  Google Scholar 

  27. 27.

    Rajkowski, J. Correlations between locus coeruleus (LC) neural activity, pupil diameter and behavior in monkey support a role of LC in attention. Soc. Neurosci. abstr. 19, 974 (1993).

  28. 28.

    Eldar, E., Cohen, J. D. & Niv, Y. The effects of neural gain on attention and learning. Nat. Neurosci. 16, 1146–1153 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    Sara, S. J. The locus coeruleus and noradrenergic modulation of cognition. Nat. Rev. Neurosci. 10, 211–223 (2009).

    CAS  Article  Google Scholar 

  30. 30.

    Cavanagh, J. F., Wiecki, T. V., Kochar, A. & Frank, M. J. Eye tracking and pupillometry are indicators of dissociable latent decision processes. J. Exp. Psychol. Gen. 143, 1476–1488 (2014).

    Article  Google Scholar 

  31. 31.

    Murphy, P. R., Vandekerckhove, J. & Nieuwenhuis, S. Pupil-linked arousal determines variability in perceptual decision making. PLoS Comput. Biol. 10, e1003854 (2014).

    Article  Google Scholar 

  32. 32.

    Mather, M., Clewett, D., Sakaki, M. & Harley, C. W. Norepinephrine ignites local hotspots of neuronal excitation: how arousal amplifies selectivity in perception and memory. Behav. Brain Sci. 39, e200 (2016).

    Article  Google Scholar 

  33. 33.

    Eldar, E., Felso, V., Cohen, J. D. & Niv, Y. A pupillary index of susceptibility to decision biases. Preprint at (2018).

  34. 34.

    De Gee, J. W., Knapen, T. & Donner, T. H. Decision-related pupil dilation reflects upcoming choice and individual bias. Proc. Natl Acad. Sci. USA 111, E618–E625 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    De Gee, J. W. et al. Dynamic modulation of decision biases by brainstem arousal systems. eLife 6, e23232 (2017).

    Article  Google Scholar 

  36. 36.

    Murphy, P. R., Boonstra, E. & Nieuwenhuis, S. Global gain modulation generates time-dependent urgency during perceptual choice in humans. Nat. Commun. 7, 13526 (2016).

    CAS  Article  Google Scholar 

  37. 37.

    Hauser, T. U., Moutoussis, M., Purg, N., Dayan, P. & Dolan, R. J. Noradrenaline modulates decision urgency during sequential information gathering. Preprint at (2018).

  38. 38.

    Eckhoff, P., Wong-Lin, K. & Holmes, P. Optimality and robustness of a biophysical decision-making model under norepinephrine modulation. J. Neurosci. 29, 4301–4311 (2009).

    CAS  Article  Google Scholar 

  39. 39.

    Nassar, M. R. et al. Rational regulation of learning dynamics by pupil-linked arousal systems. Nat. Neurosci. 15, 1040–1046 (2012).

    CAS  Article  Google Scholar 

  40. 40.

    Krishnamurthy, K., Nassar, M. R., Sarode, S. & Gold, J. I. Arousal-related adjustments of perceptual biases optimize perception in dynamic environments. Nat. Hum. Behav. 1, 0107 (2017).

    Article  Google Scholar 

  41. 41.

    Yartsev, M. M., Hanks, T. D., Yoon, A. M. & Brody, C. D. Causal contribution and dynamical encoding in the striatum during evidence accumulation. eLife 7, e34929 (2018).

    Article  Google Scholar 

  42. 42.

    Jepma, M. & Nieuwenhuis, S. Pupil diameter predicts changes in the exploration–exploitation trade-off: evidence for the adaptive gain theory. J. Cogn. Neurosci. 23, 1587–1596 (2011).

    Article  Google Scholar 

  43. 43.

    Servan-Schreiber, D., Printz, H. & Cohen, J. D. A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. Science 249, 892–895 (1990).

    CAS  Article  Google Scholar 

  44. 44.

    Angela, J. Y. & Dayan, P. Uncertainty, neuromodulation, and attention. Neuron 46, 681–692 (2005).

    Article  Google Scholar 

  45. 45.

    O’Reilly, J. X. et al. Dissociable effects of surprise and model update in parietal and anterior cingulate cortex. Proc. Natl Acad. Sci. USA 110, E3660–E3669 (2013).

    Article  Google Scholar 

  46. 46.

    Yechiam, E. & Telpaz, A. To take risk is to face loss: a tonic pupillometry study. Front. Psychol. 2, 344 (2011).

    Article  Google Scholar 

  47. 47.

    Aston-Jones, G., Rajkowski, J., Kubiak, P. & Alexinsky, T. Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J. Neurosci. 14, 4467–4480 (1994).

    CAS  Article  Google Scholar 

Download references


The authors received no specific funding for this work. We thank M. Alberhasky, C. Andrade, D. Carrera, K. Chung, M. de Leon, Z. Dzhalilova, A. Esprit, A. Foley, E. Giron, B. Gonzalez, A. Haddad, L. Hall, M. Higgs, M. Jacobs, M.-H. Kang, K. Kellohen, N. Kwatra, H. Kyllo, A. Lawwill, S. Low, C. Lynch, A. Ornelas, G. Patterson, F. Santos, S. Savita, C. Sikora, V. Thornton, G. Vargas, C. West and C. Wong for help with running the experiments. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information




W.K. analysed the data. T.H. collected and preprocessed the data. T.A.H. and R.C.W. designed the experiment. W.K. and R.C.W. wrote the manuscript. All three authors contributed to interpretation of the results and critical discussion.

Corresponding author

Correspondence to Waitsang Keung.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Supplementary Figures 1–15, and Supplementary References.

Reporting Summary

Supplementary Software

Description: Custom code that implements the major analyses described in the paper

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keung, W., Hagen, T.A. & Wilson, R.C. Regulation of evidence accumulation by pupil-linked arousal processes. Nat Hum Behav 3, 636–645 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing