Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A scoping review of ontologies related to human behaviour change


Ontologies are classification systems specifying entities, definitions and inter-relationships for a given domain, with the potential to advance knowledge about human behaviour change. A scoping review was conducted to: (1) identify what ontologies exist related to human behaviour change, (2) describe the methods used to develop these ontologies and (3) assess the quality of identified ontologies. Using a systematic search, 2,303 papers were identified. Fifteen ontologies met the eligibility criteria for inclusion, developed in areas such as cognition, mental disease and emotions. Methods used for developing the ontologies were expert consultation, data-driven techniques and reuse of terms from existing taxonomies, terminologies and ontologies. Best practices used in ontology development and maintenance were documented. The review did not identify any ontologies representing the breadth and detail of human behaviour change. This suggests that advancing behavioural science would benefit from the development of a behaviour change intervention ontology.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Data availability

The data that support the findings of this study are available from the corresponding author upon request.


  1. Michie, S., Van Stralen, M. M. & West, R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implement. Sci. 6, 42 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Michie, S. & Johnston, M. Optimising the value of the evidence generated in implementation science: the use of ontologies to address the challenges. Implement. Sci. 12, 131 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Michie, S., West, R., Campbell, R., Brown, J. & Gainforth, H. ABC of Behaviour Change Theories (Silverback Publishing, London, UK, 2014).

  4. Davis, R., Campbell, R., Hildon, Z., Hobbs, L. & Michie, S. Theories of behaviour and behaviour change across the social and behavioural sciences: a scoping review. Health Psychol. Rev. 9, 323–344 (2015).

    Article  PubMed  Google Scholar 

  5. Michie, S. et al. The Human Behaviour-Change Project: harnessing the power of artificial intelligence and machine learning for evidence synthesis and interpretation. Implement. Sci. 12, 121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ioannidis, J. P. et al. Increasing value and reducing waste in research design, conduct, and analysis. Lancet 383, 166–175 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stavri, Z. & Michie, S. Classification systems in behavioural science: current systems and lessons from the natural, medical and social sciences. Health Psychol. Rev. 6, 113–140 (2012).

    Article  Google Scholar 

  8. Hollands, G. J. et al. The TIPPME intervention typology for changing environments to change behaviour. Nat. Hum. Behav. 1, 0140 (2017).

    Article  Google Scholar 

  9. Michie, S. et al. The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: building an international consensus for the reporting of behavior change interventions. Ann. Behav. Med. 46, 81–95 (2013).

    Article  PubMed  Google Scholar 

  10. Carey, R. N. et al. Describing the ‘how’ of behaviour change: a taxonomy of modes of delivery. In UK Society for Behavioural Medicine Conference (2016).

  11. Michie, S. et al. From theory-inspired to theory-based interventions: a protocol for developing and testing a methodology for linking behaviour change techniques to theoretical mechanisms of action. Ann. Behav. Med. 52, 501–512 (2018).

    Article  PubMed  Google Scholar 

  12. Howlett, N., Trivedi, D., Troop, N. A. & Chater, A. M. Are physical activity interventions for healthy inactive adults effective in promoting behavior change and maintenance, and which behavior change techniques are effective? A systematic review and meta-analysis. Transl. Behav. Med. (2018).

  13. Michie, S., West, R., Sheals, K. & Godinho, C. A. Evaluating the effectiveness of behavior change techniques in health-related behavior: a scoping review of methods used. Transl. Behav. Med. 8, 212–224 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Arp, R., Smith, B. & Spear, A. D. Building Ontologies with Basic Formal Ontology (MIT Press, Cambridge, MA, 2015).

  15. Busse, J. et al. Actually, what does “ontology” mean? J. Comput. Inf. Technol. 23, 29–41 (2015).

    Article  Google Scholar 

  16. Blanch, A. et al. Ontologies about human behavior: a review of knowledge modeling systems. Eur. Psychol. 22, 180–197 (2017).

    Article  Google Scholar 

  17. Larsen, K. R. et al. Behavior change interventions: the potential of ontologies for advancing science and practice. J. Behav. Med. 40, 6–22 (2017).

    Article  PubMed  Google Scholar 

  18. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bauer, S. in The Gene Ontology Handbook (eds Dessimoz, C. & Škunca, N.) 175–188 (Springer, New York City, 2017).

  20. Kraker, P. et al. The Vienna principles: a vision for scholarly communication in the 21st century. VOB Mitteilungen 69, 436–446 (2016).

    Article  Google Scholar 

  21. Noy, N. F. et al. BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res. 37, W170–W173 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smith, B. et al. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 25, 1251–1255 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Principle: overview. The OBO Foundry (2018).

  24. Poldrack, R. A. et al. The Cognitive Atlas: toward a knowledge foundation for cognitive neuroscience. Front. Neuroinform. 5, 17 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hastings, J., Smith, B., Ceusters, W., Jensen, M. & Mulligan, K. The mental functioning ontology. In Proc. 3rd International Conference on Biomedical Ontology (ICBO’12) (eds Cornet R. & Stevens, R.) 1–5 (2012).

  26. Gkoutos, G. V., Schofield, P. N. & Hoehndorf, R. The neurobehavior ontology: an ontology for annotation and integration of behavior and behavioral phenotypes. Int. Rev. Neurobiol. 103, 69–87 (2012).

    Article  PubMed  Google Scholar 

  27. Ceusters, W. & Smith, B. Foundations for a realist ontology of mental disease. J. Biomed. Semantics 1, 10 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jensen, M. et al. The neurological disease ontology. J. Biomed. Semantics 4, 42 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schriml, L. M. et al. Disease Ontology: a backbone for disease semantic integration. Nucleic Acids Res. 40, D940–D946 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Schriml, L. M. et al. GeMInA, genomic metadata for infectious agents, a geospatial surveillance pathogen database. Nucleic Acids Res. 38, D754–D764 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Mattingly, C. J., McKone, T. E., Callahan, M. A., Blake, J. A. & Hubal, E. A. C. Providing the missing link: the expsoure science ontology. Environ. Sci. Technol. 46, 3046–3053 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Turner, J. A. & Laird, A. R. The cognitive paradigm ontology: design and application. Neuroinformatics 10, 57–66 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gil, R., Virgili-Gomá, J., García, R. & Mason, C. Emotions ontology for collaborative modelling and learning of emotional responses. Comput. Human Behav. 51, 610–617 (2015).

    Article  Google Scholar 

  34. Hastings, J., Ceusters, W., Smith, B. & Mulligan, K. Dispositions and processes in the Emotion Ontology. In Proc. 2nd International Conference on Biomedical Ontology 71–78 (2011).

  35. Pesquita, C., Ferreira, J. D., Couto, F. M. & Silva, M. J. The epidemiology ontology: an ontology for the semantic annotation of epidemiological resources. J. Biomed. Semantics 5, 4 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hicks, A., Hanna, J., Welch, D., Brochhausen, M. & Hogan, W. R. The ontology of medically related social entities: recent developments. J. Biomed. Semantics 7, 47 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Phan, N., Dou, D., Wang, H., Kil, D. & Piniewski, B. Ontology-based deep learning for human behavior prediction with explanations in health social networks. Inf. Sci. (NY) 384, 298–313 (2017).

    Article  Google Scholar 

  38. Bickmore, T. W., Schulman, D. & Sidner, C. L. A reusable framework for health counseling dialogue systems based on a behavioral medicine ontology. J. Biomed. Inform. 44, 183–197 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Prochaska, J. O. & Velicer, W. F. The transtheoretical model of health behavior change. Am. J. Health Promot. 12, 38–48 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Hoffmann, T. C. et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. BMJ 348, g1687 (2014).

    Article  PubMed  Google Scholar 

  41. Diagnostic and Statistical Manual of Mental Disorders (DSM-5) (American Psychiatric Association, Washington, DC, 2013).

  42. Basic Formal Ontology. The OBO Foundry (2018).

  43. Ceusters, W. An information artifact ontology perspective on data collections and associated representational artifacts. Stud. Health Technol. Inform. 180, 68–72 (2012).

    PubMed  Google Scholar 

  44. Courtot, M. et al. MIREOT: the minimum information to reference an external ontology term. Appl. Ontol. 6, 23–33 (2011).

    Google Scholar 

  45. Richard, M., Aimé, X., Krebs, M.-O. & Charlet, J. Enrich classifications in psychiatry with textual data: an ontology for psychiatry including social concepts. Stud. Health Technol. Inform. 210, 221–223 (2015).

    PubMed  Google Scholar 

  46. Wilkinson et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shneiderman, B. & Plaisant, C. Designing the User Interface: Strategies for Effective Human–Computer Interaction 5th edn (Pearson Education, New York, 2010).

  48. Arksey, H. & O’Malley, L. Scoping studies: towards a methodological framework. Int. J. Soc. Res. Methodol. 8, 19–32 (2005).

    Article  Google Scholar 

  49. Norris, E., Finnerty, A. N., Hastings, J., Stokes, G. & Michie, S. Advancing methods to develop behaviour change interventions: a review of relevant ontologies. Prospero (2017).

  50. Tricco, A. C. et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): checklist and explanation. Ann. Intern. Med. 169, 467–473 (2018).

    Article  PubMed  Google Scholar 

  51. Simera, I. et al. Transparent and accurate reporting increases reliability, utility, and impact of your research: reporting guidelines and the EQUATOR Network. BMC Med. 8, 24 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Matentzoglu, N., Malone, J., Mungall, C. & Stevens, R. MIRO: guidelines for minimum information for the reporting of an ontology. J. Biomed. Semantics 9, 6 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. De Silva, T. S., MacDonald, D., Paterson, G., Sikdar, K. C. & Cochrane, B. Systematized nomenclature of medicine clinical terms (SNOMED CT) to represent computed tomography procedures. Comput. Methods Programs Biomed. 101, 324–329 (2011).

    Article  PubMed  Google Scholar 

  54. Brown, E. G., Wood, L. & Wood, S. The medical dictionary for regulatory activities (MedDRA). Drug Saf. 20, 109–117 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Thomas, J., Brunton, J. & Graziosi, S. EPPI-Reviewer 4.0: software for research synthesis (Institute of Education, University of London, 2010).

  56. Noy, N. F. et al. Protégé 2000: an open-source ontology-development and knowledge-acquisition environment. AMIA Annu. Symp. Proc. 2003, 953 (2003).

    PubMed Central  Google Scholar 

  57. Shearer, R., Motik, B. & Horrocks, I. HermiT: a highly-efficient OWL reasoner. OWLED 432, 91–101 (2008).

    Google Scholar 

  58. Lamy, J. B. Owlready: ontology-oriented programming in Python with automatic classification and high-level constructs for biomedical ontologies. Artif. Intell. Med. 80, 11–28 (2017).

    Article  PubMed  Google Scholar 

  59. Vrandecic, D. in Handbook on Ontologies (eds Staab, S. & Studer, R.) 293–313 (Springer, Berlin, Heidelberg, 2009).

  60. Amith, M., He, Z., Bian, J., Antonio Lossio-Ventura, J. & Tuo, C. Assessing the practice of biomedical ontology evaluation: gaps and opportunities. J. Biomed. Inform. 80, 1–13 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Katsumi, K. & Gruninger, M. Choosing ontologies for reuse. Appl. Ontol. 12, 195–221 (2017).

    Article  Google Scholar 

  62. Guarino, N. & Welty, C. Evaluating ontological decisions with OntoClean. Commun. ACM 45, 61–65 (2002).

    Article  Google Scholar 

  63. McMurry, J. A. et al. Identifiers for the 21st century: how to design, provision, and reuse persistent identifiers to maximise utility and impact of life science data. PLoS Biol. 15, e2001414 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Horridge, M., Parsia, B. & Sattler, U. in Scalable Uncertainty Management. SUM 2009. Lecture Notes in Computer Science Vol. 5785 (eds Godo L. & Pugliese A.) 124–137 (Springer, Berlin, Heidelberg, 2009).

  65. Glimm, B., Horrocks, I., Motik, B., Stoilos, G. & Wang, Z. HermiT: an OWL 2 reasoner. J. Autom. Reasoning 54, 245–269 (2014).

    Article  Google Scholar 

Download references


We thank the Wellcome Trust for funding the project: ‘The Human Behaviour-Change Project: Building the science of behaviour change for complex intervention development’ (201,524/Z/16/Z). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. Thanks to E. Crayton, S. Stanton-Fay, H. Walton and A. Wright for providing comments on an earlier draft.

Author information

Authors and Affiliations



All authors approved the review protocol. E.N. and A.N.F. performed the searches. E.N., A.N.F. and G.S. performed the screening, with J.H. providing feedback. E.N. and A.N.F. performed the data extraction and quality assessment, with J.H. acting as a third reviewer for any conflicts. E.N. and A.N.F. wrote the first draft, with all authors contributing to drafts and approving the final version of the manuscript.

Corresponding author

Correspondence to Emma Norris.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2; Supplementary Figure 1

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norris, E., Finnerty, A.N., Hastings, J. et al. A scoping review of ontologies related to human behaviour change. Nat Hum Behav 3, 164–172 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing