Imagined speech influences perceived loudness of sound


The way top-down and bottom-up processes interact to shape our perception and behaviour is a fundamental question and remains highly controversial. How early in a processing stream do such interactions occur, and what factors govern such interactions? The degree of abstractness of a perceptual attribute (for example, orientation versus shape in vision, or loudness versus sound identity in hearing) may determine the locus of neural processing and interaction between bottom-up and internal information. Using an imagery-perception repetition paradigm, we find that imagined speech affects subsequent auditory perception, even for a low-level attribute such as loudness. This effect is observed in early auditory responses in magnetoencephalography and electroencephalography that correlate with behavioural loudness ratings. The results suggest that the internal reconstruction of neural representations without external stimulation is flexibly regulated by task demands, and that such top-down processes can interact with bottom-up information at an early perceptual stage to modulate perception.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Experimental procedure and behavioural results for BE1 and BE2.
Fig. 2: Experimental procedure and behavioural results for BE3 and BE4.
Fig. 3: Neural adaptation results in the MEG experiment.
Fig. 4: Results of the EEG experiment.


  1. 1.

    Gilbert, C. D. & Li, W. Top-down influences on visual processing. Nat. Rev. Neurosci. 14, 350–363 (2013).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Firestone, C. & Scholl, B. J. Cognition does not affect perception: evaluating the evidence for ‘top-down’ effects. Behav. Brain Sci. 39, e229 (2016).

    Article  PubMed  Google Scholar 

  3. 3.

    Molloy, K., Griffiths, T. D., Chait, M. & Lavie, N. Inattentional deafness: visual load leads to time-specific suppression of auditory evoked responses. J. Neurosci. 35, 16046–16054 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Tian, X. & Poeppel, D. Mental imagery of speech: linking motor and perceptual systems through internal simulation and estimation. Front. Hum. Neurosci. 6, 314 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Tian, X. & Poeppel, D. The effect of imagination on stimulation: the functional specificity of efference copies in speech processing. J. Cogn. Neurosci. 25, 1020–1036 (2013).

    Article  PubMed  Google Scholar 

  6. 6.

    Tian, X., Zarate, J. M. & Poeppel, D. Mental imagery of speech implicates two mechanisms of perceptual reactivation. Cortex 77, 1–12 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Wheeler, M. E., Petersen, S. E. & Buckner, R. L. Memory’s echo: vivid remembering reactivates sensory-specific cortex. Proc. Natl Acad. Sci. USA 97, 11125–11129 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Kosslyn, S. M., Ganis, G. & Thompson, W. L. Neural foundations of imagery. Nat. Rev. Neurosci. 2, 635–642 (2001).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Zatorre, R. J. & Halpern, A. R. Mental concerts: musical imagery and auditory cortex. Neuron 47, 9–12 (2005).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Kosslyn, S. M. et al. The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science 284, 167–170 (1999).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Slotnick, S. D., Thompson, W. L. & Kosslyn, S. M. Visual mental imagery induces retinotopically organized activation of early visual areas. Cereb. Cortex 15, 1570–1583 (2005).

    Article  PubMed  Google Scholar 

  12. 12.

    Thirion, B. et al. Inverse retinotopy: inferring the visual content of images from brain activation patterns. Neuroimage 33, 1104–1116 (2006).

    Article  PubMed  Google Scholar 

  13. 13.

    Bunzeck, N., Wuestenberg, T., Lutz, K., Heinze, H.-J. & Jancke, L. Scanning silence: mental imagery of complex sounds. Neuroimage 26, 1119–1127 (2005).

    Article  PubMed  Google Scholar 

  14. 14.

    Halpern, A. R. & Zatorre, R. J. When that tune runs through your head: a PET investigation of auditory imagery for familiar melodies. Cereb. Cortex 9, 697–704 (1999).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Kosslyn, S. M. & Thompson, W. L. When is early visual cortex activated during visual mental imagery? Psychol. Bull. 129, 723–746 (2003).

    Article  PubMed  Google Scholar 

  16. 16.

    Tartaglia, E. M., Bamert, L., Mast, F. W. & Herzog, M. H. Human perceptual learning by mental imagery. Curr. Biol. 19, 2081–2085 (2009).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Pearson, J., Clifford, C. W. & Tong, F. The functional impact of mental imagery on conscious perception. Curr. Biol. 18, 982–986 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Pearson, J., Rademaker, R. L. & Tong, F. Evaluating the mind’s eye: the metacognition of visual imagery. Psychol. Sci. 22, 1535–1542 (2011).

    Article  PubMed  Google Scholar 

  19. 19.

    Laeng, B. & Sulutvedt, U. The eye pupil adjusts to imaginary light. Psychol. Sci. 25, 188–197 (2014).

    Article  PubMed  Google Scholar 

  20. 20.

    Scott, M. Corollary discharge provides the sensory content of inner speech. Psychol. Sci. 24, 1824–1830 (2013).

    Article  PubMed  Google Scholar 

  21. 21.

    Grill-Spector, K., Henson, R. & Martin, A. Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn. Sci. 10, 14–23 (2006).

    Article  PubMed  Google Scholar 

  22. 22.

    Tian, X. & Huber, D. E. Measures of spatial similarity and response magnitude in MEG and scalp EEG. Brain Topogr. 20, 131–141 (2008).

    Article  PubMed  Google Scholar 

  23. 23.

    Tian, X., Poeppel, D. & Huber, D. E. TopoToolbox: using sensor topography to calculate psychologically meaningful measures from event-related EEG/MEG. Comput. Intell. Neurosci. 2011, 674605 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Roberts, T. P. L., Ferrari, P., Stufflebeam, S. M. & Poeppel, D. Latency of the auditory evoked neuromagnetic field components: stimulus dependence and insights toward perception. J. Clin. Neurophysiol. 17, 114–129 (2000).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Kraemer, D. J., Macrae, C. N., Green, A. E. & Kelley, W. M. Musical imagery: sound of silence activates auditory cortex. Nature 434, 158 (2005).

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Oh, J., Kwon, J. H., Yang, P. S. & Jeong, J. Auditory imagery modulates frequency-specific areas in the human auditory cortex. J. Cogn. Neurosci. 25, 175–187 (2013).

    Article  PubMed  Google Scholar 

  27. 27.

    Linke, A. C. & Cusack, R. Flexible information coding in human auditory cortex during perception, imagery, and STM of complex sounds. J. Cogn. Neurosci. 27, 1322–1333 (2015).

    Article  PubMed  Google Scholar 

  28. 28.

    Cebrian, A. N. & Janata, P. Electrophysiological correlates of accurate mental image formation in auditory perception and imagery tasks. Brain Res. 1342, 39–54 (2010).

    Article  Google Scholar 

  29. 29.

    Herholz, S. C., Lappe, C., Knief, A. & Pantev, C. Neural basis of music imagery and the effect of musical expertise. Eur. J. Neurosci. 28, 2352–2360 (2008).

    Article  PubMed  Google Scholar 

  30. 30.

    Wu, J., Yu, Z., Mai, X., Wei, J. & Luo, Y. Pitch and loudness information encoded in auditory imagery as revealed by event‐related potentials. Psychophysiology 48, 415–419 (2011).

    Article  PubMed  Google Scholar 

  31. 31.

    Helson, H. Current trends and issues in adaptation-level theory. Am. Psychol. 19, 26–38 (1964).

    Article  Google Scholar 

  32. 32.

    Stevens, S. S. Adaptation-level vs. the relativity of judgment. Am. J. Psychol. 71, 633–646 (1958).

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Heeger, D. J. Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9, 181–197 (1992).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Louie, K., Grattan, L. E. & Glimcher, P. W. Reward value-based gain control: divisive normalization in parietal cortex. J. Neurosci. 31, 10627–10639 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Mapes-Riordan, D. & Yost, W. A. Loudness recalibration as a function of level. J. Acoust. Soc. Am. 106, 3506–3511 (1999).

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Arieh, Y. & Marks, L. E. Recalibrating the auditory system: a speed-accuracy analysis of intensity perception. J. Exp. Psychol. Hum. Percept. Perform. 29, 523–536 (2003).

    Article  PubMed  Google Scholar 

  37. 37.

    Brascamp, J. W., Knapen, T. H., Kanai, R., van Ee, R. & van den Berg, A. V. Flash suppression and flash facilitation in binocular rivalry. J. Vision. 7, 12.1-12 (2007).

    Article  Google Scholar 

  38. 38.

    Scott, M. Corollary discharge provides the sensory content of inner speech. Psychol. Sci. 24, 1824–1830 (2013).

    Article  PubMed  Google Scholar 

  39. 39.

    Tian, X. & Poeppel, D. Dynamics of self-monitoring and error detection in speech production: evidence from mental imagery and MEG. J. Cogn. Neurosci. 27, 352–364 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Moseley, P., Smailes, D., Ellison, A. & Fernyhough, C. The effect of auditory verbal imagery on signal detection in hallucination-prone individuals. Cognition 146, 206–216 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Ford, J. M. et al. Neurophysiological studies of auditory verbal hallucinations. Schizophr. Bull. 38, 715–723 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Ford, J. M. et al. Tuning in to the voices: a multisite FMRI study of auditory hallucinations. Schizophr. Bull. 35, 58–66 (2009).

    Article  PubMed  Google Scholar 

  43. 43.

    Mathalon, D. H., Jorgensen, K. W., Roach, B. J. & Ford, J. M. Error detection failures in schizophrenia: ERPs and fMRI. Int. J. Psychophysiol. 73, 109–117 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Perez, V. B. et al. Error monitoring dysfunction across the illness course of schizophrenia. J. Abnorm. Psychol. 121, 372–387 (2012).

    Article  PubMed  Google Scholar 

  45. 45.

    De Cheveigné, A. & Simon, J. Z. Denoising based on time-shift PCA. J. Neurosci. Methods 165, 297–305 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Almeida, D. & Poeppel, D. Word-specific repetition effects revealed by MEG and the implications for lexical access. Brain Lang. 127, 497–509 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Davelaar, E. J., Tian, X., Weidemann, C. T. & Huber, D. E. A habituation account of change detection in same/different judgments. Cogn. Affect. Behav. Neurosci. 11, 608–626 (2011).

    Article  PubMed  Google Scholar 

  48. 48.

    Huber, D. E., Tian, X., Curran, T., O’Reilly, R. C. & Woroch, B. The dynamics of integration and separation: ERP, MEG, and neural network studies of immediate repetition effects. J. Exp. Psychol. Hum. Percept. Perform. 34, 1389–1416 (2008).

    Article  PubMed  Google Scholar 

  49. 49.

    Luo, H., Tian, X., Song, K., Zhou, K. & Poeppel, D. Neural response phase tracks how listeners learn new acoustic representations. Curr. Biol. 23, 968–974 (2013).

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Tian, X. & Huber, D. E. Playing “duck duck goose” with neurons: change detection through connectivity reduction. Psychol. Sci. 24, 819–827 (2013).

    Article  PubMed  Google Scholar 

  51. 51.

    Tian, X. & Poeppel, D. Mental imagery of speech and movement implicates the dynamics of internal forward models. Front. Psychol. 1, 166 (2010).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J. & Lounasmaa, O. V. Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65, 413–497 (1993).

    Article  Google Scholar 

  53. 53.

    Lin, F. H., Belliveau, J. W., Dale, A. M. & Hämäläinen, M. S. Distributed current estimates using cortical orientation constraints. Hum. Brain Mapp. 27, 1–13 (2006).

    Article  PubMed  Google Scholar 

  54. 54.

    Fischl, B., Sereno, M. I. & Dale, A. M. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195–207 (1999).

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Fischl, B., Sereno, M. I., Tootell, R. B. H. & Dale, A. M. High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8, 272–284 (1999).

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Dale, A. M. et al. Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26, 55–67 (2000).

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004).

    Article  PubMed  Google Scholar 

  58. 58.

    Lopez-Calderon, J. & Luck, S. J. ERPLAB: an open-source toolbox for the analysis of event-related potentials. Front. Hum. Neurosci. 8, 213 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D. & Iverson, G. Bayesian t-tests for accepting and rejecting the null hypothesis. Psychon. Bull. Rev. 16, 225–237 (2009).

    Article  PubMed  Google Scholar 

Download references


We thank J. Walker for technical support with MEG data collection, S. Yuan for help with running the EEG experiment, Q. Xu for help with running BE2–BE4 and L. Tao for comments and edits on an early draft. This study was supported by the National Natural Science Foundation of China (31500914 to X.T., and 31771248 and 31500873 to N.D.), the Major Program of the Science and Technology Commission of Shanghai Municipality (15JC1400104 and 17JC1404104), the Program of Introducing Talents of Discipline to Universities (Base B16018), a grant from the New York University Global Seed Grants for Collaborative Research (85-65701-G0757-R4551), the Joint Research Institute Seed Grants for Research Collaboration from the New York University-East China Normal University Institute of Brain and Cognitive Science at New York University, Shanghai (to X.T.), the Zhejiang Provincial Natural Science Foundation of China (LR16C090002), research funding from the State Key Laboratory of Industrial Control Technology, Zhejiang University (to N.D.) and National Institutes of Health 2R01DC05660 (to D.P.). No funders had any role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information




X.Tian conceived and designed the study, performed BE1 and the MEG experiments and analysed the data. F.B. performed BE2–BE4 and the EEG experiments. X.Tian, N.D., X.Teng and D.P. wrote the paper.

Corresponding author

Correspondence to Xing Tian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tian, X., Ding, N., Teng, X. et al. Imagined speech influences perceived loudness of sound. Nat Hum Behav 2, 225–234 (2018).

Download citation

Further reading