News & Views | Published:


Identifying suicidal young adults

Nature Human Behaviourvolume 1pages860861 (2017) | Download Citation

Functional brain-imaging methods provide rich datasets that can be exploited by machine-learning techniques to help assess psychiatric disorders. A recent study uses this approach to identify patients with suicidal thoughts, and to distinguish those who have attempted suicide from those who have not.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Stephan, K. E. et al. Lancet Psychiatry 3, 77–83 (2016).

  2. 2.

    Just, M. A. et al. Nat. Hum. Behav. 1, (2017).

  3. 3.

    Curtis, V. A. et al. Schizophr. Res. 37, 35–44 (1999).

  4. 4.

    Prvulovic, D., Bokde, A., Fatraco, F. & Hampel, H. Prog. Neurobiol. 95, 557–569 (2011).

  5. 5.

    Koshino, H. et al. Cereb. Cortex 18, 289–300 (2008).

  6. 6.

    Harrison, B. J. et al. Arch. Gen. Psychiatry 66, 1189–1200 (2009).

  7. 7.

    Kassam, K. S., Markey, A. R., Cherkassky, V. L., Loewenstein, G. & Just, M. A. PLoS ONE 8, e66032 (2013).

  8. 8.

    Horwitz, B. & Rowe, J. B. Prog. Neurobiol. 95, 505–509 (2011).

Download references

Author information


  1. Chief of the Brain Imaging and Modeling Section at the National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA

    • Barry Horwitz


  1. Search for Barry Horwitz in:

Corresponding author

Correspondence to Barry Horwitz.

About this article

Publication history



Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing