The dopaminergic reward system underpins gender differences in social preferences

Abstract

Women are known to have stronger prosocial preferences than men, but it remains an open question as to how these behavioural differences arise from differences in brain functioning. Here, we provide a neurobiological account for the hypothesized gender difference. In a pharmacological study and an independent neuroimaging study, we tested the hypothesis that the neural reward system encodes the value of sharing money with others more strongly in women than in men. In the pharmacological study, we reduced receptor type-specific actions of dopamine, a neurotransmitter related to reward processing, which resulted in more selfish decisions in women and more prosocial decisions in men. Converging findings from an independent neuroimaging study revealed gender-related activity in neural reward circuits during prosocial decisions. Thus, the neural reward system appears to be more sensitive to prosocial rewards in women than in men, providing a neurobiological account for why women often behave more prosocially than men.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Study design and experimental tasks.
Fig. 2: Gender-related effects of amisulpride on prosocial choices.
Fig. 3: Gender-related effects of amisulpride on social discounting parameters.
Fig. 4: Effects of amisulpride on intertemporal choices.
Fig. 5: Results of the neuroimaging study.

References

  1. 1.

    Croson, R. & Gneezy, U. Gender differences in preferences. J. Econ. Lit. 47, 448–474 (2009).

    Article  Google Scholar 

  2. 2.

    Rand, D. G., Brescoll, V. L., Everett, J. A., Capraro, V. & Barcelo, H. Social heuristics and social roles: intuition favors altruism for women but not for men. J. Exp. Psychol. Gen. 145, 389–396 (2016).

    Article  PubMed  Google Scholar 

  3. 3.

    Rand, D. G. Social dilemma cooperation (unlike dictator game giving) is intuitive for men as well as women. J. Exp. Soc. Psychol. 73, 164–168 (2017).

    Article  Google Scholar 

  4. 4.

    Heilman, M. E. & Chen, J. J. Same behavior, different consequences: reactions to men’s and women’s altruistic citizenship behavior. J. Appl. Psychol. 90, 431–441 (2005).

    Article  PubMed  Google Scholar 

  5. 5.

    Eagly, A. H. Sex Differences in Social Behavior: A Social-role Interpretation (L. Erlbaum Associates, Hillsdale, NJ, 1987).

  6. 6.

    Eagly, A. H. & Crowley, M. Gender and helping behavior: a meta-analytic review of the social psychological literature. Psychol. Bull. 100, 283–308 (1986).

    Article  Google Scholar 

  7. 7.

    Schultz, W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 30, 259–288 (2007).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Schultz, W. Neuronal reward and decision signals: from theories to data. Physiol. Rev. 95, 853–951 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Saez, I., Zhu, L., Set, E., Kayser, A. & Hsu, M. Dopamine modulates egalitarian behavior in humans. Curr. Biol. 25, 912–919 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Tricomi, E., Rangel, A., Camerer, C. F. & O’Doherty, J. P. Neural evidence for inequality-averse social preferences. Nature 463, 1089–1091 (2010).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Harbaugh, W. T., Mayr, U. & Burghart, D. R. Neural responses to taxation and voluntary giving reveal motives for charitable donations. Science 316, 1622–1625 (2007).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Mobbs, D. et al. A key role for similarity in vicarious reward. Science 324, 900 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Fareri, D. S., Niznikiewicz, M. A., Lee, V. K. & Delgado, M. R. Social network modulation of reward-related signals. J. Neurosci. 32, 9045–9052 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Hsu, M., Anen, C. & Quartz, S. R. The right and the good: distributive justice and neural encoding of equity and efficiency. Science 320, 1092–1095 (2008).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Morelli, S. A., Sacchet, M. D. & Zaki, J. Common and distinct neural correlates of personal and vicarious reward: a quantitative meta-analysis. NeuroImage 112, 244–253 (2015).

    Article  PubMed  Google Scholar 

  16. 16.

    Pedroni, A., Eisenegger, C., Hartmann, M. N., Fischbacher, U. & Knoch, D. Dopaminergic stimulation increases selfish behavior in the absence of punishment threat. Psychopharmacology 231, 135–141 (2014).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Rosenzweig, P. et al. A review of the pharmacokinetics, tolerability and pharmacodynamics of amisulpride in healthy volunteers. Hum. Psychopharmacol. 17, 1–13 (2002).

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Jones, B. & Rachlin, H. Social discounting. Psychol. Sci. 17, 283–286 (2006).

    Article  PubMed  Google Scholar 

  19. 19.

    Strombach, T. et al. Social discounting involves modulation of neural value signals by temporoparietal junction. Proc. Natl Acad. Sci. USA 112, 1619–1624 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Soutschek, A., Ruff, C. C., Strombach, T., Kalenscher, T. & Tobler, P. N. Brain stimulation reveals crucial role of overcoming self-centeredness in self-control. Sci. Adv. 2, e1600992 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Wise, R. A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Strombach, T., Margittai, Z., Gorczyca, B. & Kalenscher, T. Gender-specific effects of cognitive load on social discounting. PloS ONE 11, e0165289 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Weber, S. C. et al. Dopamine D2/3- and μ-opioid receptor antagonists reduce cue-induced responding and reward impulsivity in humans. Transl. Psychiatr. 6, e850 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Kayser, A. S., Allen, D. C., Navarro-Cebrian, A., Mitchell, J. M. & Fields, H. L. Dopamine, corticostriatal connectivity, and intertemporal choice. J. Neurosci. 32, 9402–9409 (2012).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Wagenmakers, E. J. A practical solution to the pervasive problems of p values. Psychonom. Bull. Rev. 14, 779–804 (2007).

    Article  Google Scholar 

  26. 26.

    Jarosz, A. & Wiley, J. What are the odds? A practical guide to computing and reporting Bayes factors. J. Problem Solving 7, 2 (2014).

    Article  Google Scholar 

  27. 27.

    Jeffreys, H. Theory of Probability 3rd edn (Oxford Univ. Press, New York, NY, 1961).

  28. 28.

    Pine, A., Shiner, T., Seymour, B. & Dolan, R. J. Dopamine, time, and impulsivity in humans. J. Neurosci. 30, 8888–8896 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Pessiglione, M., Seymour, B., Flandin, G., Dolan, R. J. & Frith, C. D. Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442, 1042–1045 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Ferenczi, E. A. et al. Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science 351, aac9698 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Bartra, O., McGuire, J. T. & Kable, J. W. The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage 76, 412–427 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Clithero, J. A. & Rangel, A. Informatic parcellation of the network involved in the computation of subjective value. Soc. Cogn. Affect. Neurosci. 9, 1289–1302 (2014).

    Article  PubMed  Google Scholar 

  33. 33.

    McClure, S. M., Laibson, D. I., Loewenstein, G. & Cohen, J. D. Separate neural systems value immediate and delayed monetary rewards. Science 306, 503–507 (2004).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Bodi, N. et al. Reward-learning and the novelty-seeking personality: a between- and within-subjects study of the effects of dopamine agonists on young Parkinson’s patients. Brain 132, 2385–2395 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Joel, D. et al. Sex beyond the genitalia: the human brain mosaic. Proc. Natl Acad. Sci. USA 112, 15468–15473 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Glezerman, M. Yes, there is a female and a male brain: morphology versus functionality. Proc. Natl Acad. Sci. USA 113, E1971 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Dittrich, M. & Leipold, K. Gender differences in time preferences. Econ. Lett. 122, 413–415 (2014).

    Article  Google Scholar 

  38. 38.

    Kitayama, S. et al. The dopamine D4 receptor gene (DRD4) moderates cultural difference in independent versus interdependent social orientation. Psychol. Sci. 25, 1169–1177 (2014).

    Article  PubMed  Google Scholar 

  39. 39.

    Bergemann, N., Kopitz, J., Kress, K. R. & Frick, A. Plasma amisulpride levels in schizophrenia or schizoaffective disorder. Eur. Neuropsychopharmacol. 14, 245–250 (2004).

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Andersen, S. L. & Teicher, M. H. Sex differences in dopamine receptors and their relevance to ADHD. Neurosci. Biobehav. Rev. 24, 137–141 (2000).

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Abbas, A. I. et al. Amisulpride is a potent 5-HT7 antagonist: relevance for antidepressant actions in vivo. Psychopharmacology 205, 119–128 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Joutsa, J. et al. Dopaminergic function and intertemporal choice. Transl. Psychiatr. 5, e520 (2015).

    CAS  Article  Google Scholar 

  43. 43.

    Geurts, D. E., Huys, Q. J., den Ouden, H. E. & Cools, R. Serotonin and aversive Pavlovian control of instrumental behavior in humans. J. Neurosci. 33, 18932–18939 (2013).

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Hebart, M. N. & Glascher, J. Serotonin and dopamine differentially affect appetitive and aversive general Pavlovian-to-instrumental transfer. Psychopharmacology 232, 437–451 (2015).

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Gasbarri, A. & Pompili, A. Serotonergic 5-HT7 receptors and cognition. Rev. Neurosci. 25, 311–323 (2014).

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Clissold, K. A., Choi, E. & Pratt, W. E. Serotonin 1A, 1B, and 7 receptors of the rat medial nucleus accumbens differentially regulate feeding, water intake, and locomotor activity. Pharmacol. Biochem. Behav. 112, 96–103 (2013).

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Toubia, O., Johnson, E., Evgeniou, T. & Delquie, P. Dynamic experiments for estimating preferences: an adaptive method of eliciting time and risk parameters. Manage. Sci. 59, 613–640 (2013).

    Article  Google Scholar 

  48. 48.

    Kahnt, T. & Tobler, P. N. Dopamine regulates stimulus generalization in the human hippocampus. eLife 5, e12678 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Cools, R., Gibbs, S. E., Miyakawa, A., Jagust, W. & D’Esposito, M. Working memory capacity predicts dopamine synthesis capacity in the human striatum. J. Neurosci. 28, 1208–1212 (2008).

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Landau, S. M., Lal, R., O’Neil, J. P., Baker, S. & Jagust, W. J. Striatal dopamine and working memory. Cereb. Cortex 19, 445–454 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank L. Horvath and K. Treiber for help with data collection. This work was supported by grants PP00P1_128574, PP00P1_150739, 00014_165884, CRSII3_141965 (PNT) and 320030_143443 (ARB; PIs: C. Ruff and T. Hare) from the Swiss National Science Foundation, a research credit of the University of Zurich to C.J.B. (FK-16-016) and a Marie Curie International Incoming Fellowship PIIF-GA-2012-327196 to A.R.B. All funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

A.S., C.J.B., A.R.B., S.C.W., B.W., T.K. and P.N.T. designed the study. A.S., C.J.B., A.R.B., R.S., J.t.V. and H.H. performed the research. A.S., C.J.B. and I.I.K. analysed the data. A.S. and P.N.T. wrote the manuscript. C.J.B., A.R.B., R.S., S.C.W., I.I.K., J.t.V., H.H., B.W. and T.K. edited and approved the final version of the manuscript.

Corresponding author

Correspondence to Alexander Soutschek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–3

Life Sciences Reporting Summary

Life Sciences Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soutschek, A., Burke, C.J., Raja Beharelle, A. et al. The dopaminergic reward system underpins gender differences in social preferences. Nat Hum Behav 1, 819–827 (2017). https://doi.org/10.1038/s41562-017-0226-y

Download citation

Further reading