Women are known to have stronger prosocial preferences than men, but it remains an open question as to how these behavioural differences arise from differences in brain functioning. Here, we provide a neurobiological account for the hypothesized gender difference. In a pharmacological study and an independent neuroimaging study, we tested the hypothesis that the neural reward system encodes the value of sharing money with others more strongly in women than in men. In the pharmacological study, we reduced receptor type-specific actions of dopamine, a neurotransmitter related to reward processing, which resulted in more selfish decisions in women and more prosocial decisions in men. Converging findings from an independent neuroimaging study revealed gender-related activity in neural reward circuits during prosocial decisions. Thus, the neural reward system appears to be more sensitive to prosocial rewards in women than in men, providing a neurobiological account for why women often behave more prosocially than men.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Croson, R. & Gneezy, U. Gender differences in preferences. J. Econ. Lit. 47, 448–474 (2009).

  2. 2.

    Rand, D. G., Brescoll, V. L., Everett, J. A., Capraro, V. & Barcelo, H. Social heuristics and social roles: intuition favors altruism for women but not for men. J. Exp. Psychol. Gen. 145, 389–396 (2016).

  3. 3.

    Rand, D. G. Social dilemma cooperation (unlike dictator game giving) is intuitive for men as well as women. J. Exp. Soc. Psychol. 73, 164–168 (2017).

  4. 4.

    Heilman, M. E. & Chen, J. J. Same behavior, different consequences: reactions to men’s and women’s altruistic citizenship behavior. J. Appl. Psychol. 90, 431–441 (2005).

  5. 5.

    Eagly, A. H. Sex Differences in Social Behavior: A Social-role Interpretation (L. Erlbaum Associates, Hillsdale, NJ, 1987).

  6. 6.

    Eagly, A. H. & Crowley, M. Gender and helping behavior: a meta-analytic review of the social psychological literature. Psychol. Bull. 100, 283–308 (1986).

  7. 7.

    Schultz, W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 30, 259–288 (2007).

  8. 8.

    Schultz, W. Neuronal reward and decision signals: from theories to data. Physiol. Rev. 95, 853–951 (2015).

  9. 9.

    Saez, I., Zhu, L., Set, E., Kayser, A. & Hsu, M. Dopamine modulates egalitarian behavior in humans. Curr. Biol. 25, 912–919 (2015).

  10. 10.

    Tricomi, E., Rangel, A., Camerer, C. F. & O’Doherty, J. P. Neural evidence for inequality-averse social preferences. Nature 463, 1089–1091 (2010).

  11. 11.

    Harbaugh, W. T., Mayr, U. & Burghart, D. R. Neural responses to taxation and voluntary giving reveal motives for charitable donations. Science 316, 1622–1625 (2007).

  12. 12.

    Mobbs, D. et al. A key role for similarity in vicarious reward. Science 324, 900 (2009).

  13. 13.

    Fareri, D. S., Niznikiewicz, M. A., Lee, V. K. & Delgado, M. R. Social network modulation of reward-related signals. J. Neurosci. 32, 9045–9052 (2012).

  14. 14.

    Hsu, M., Anen, C. & Quartz, S. R. The right and the good: distributive justice and neural encoding of equity and efficiency. Science 320, 1092–1095 (2008).

  15. 15.

    Morelli, S. A., Sacchet, M. D. & Zaki, J. Common and distinct neural correlates of personal and vicarious reward: a quantitative meta-analysis. NeuroImage 112, 244–253 (2015).

  16. 16.

    Pedroni, A., Eisenegger, C., Hartmann, M. N., Fischbacher, U. & Knoch, D. Dopaminergic stimulation increases selfish behavior in the absence of punishment threat. Psychopharmacology 231, 135–141 (2014).

  17. 17.

    Rosenzweig, P. et al. A review of the pharmacokinetics, tolerability and pharmacodynamics of amisulpride in healthy volunteers. Hum. Psychopharmacol. 17, 1–13 (2002).

  18. 18.

    Jones, B. & Rachlin, H. Social discounting. Psychol. Sci. 17, 283–286 (2006).

  19. 19.

    Strombach, T. et al. Social discounting involves modulation of neural value signals by temporoparietal junction. Proc. Natl Acad. Sci. USA 112, 1619–1624 (2015).

  20. 20.

    Soutschek, A., Ruff, C. C., Strombach, T., Kalenscher, T. & Tobler, P. N. Brain stimulation reveals crucial role of overcoming self-centeredness in self-control. Sci. Adv. 2, e1600992 (2016).

  21. 21.

    Wise, R. A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).

  22. 22.

    Strombach, T., Margittai, Z., Gorczyca, B. & Kalenscher, T. Gender-specific effects of cognitive load on social discounting. PloS ONE 11, e0165289 (2016).

  23. 23.

    Weber, S. C. et al. Dopamine D2/3- and μ-opioid receptor antagonists reduce cue-induced responding and reward impulsivity in humans. Transl. Psychiatr. 6, e850 (2016).

  24. 24.

    Kayser, A. S., Allen, D. C., Navarro-Cebrian, A., Mitchell, J. M. & Fields, H. L. Dopamine, corticostriatal connectivity, and intertemporal choice. J. Neurosci. 32, 9402–9409 (2012).

  25. 25.

    Wagenmakers, E. J. A practical solution to the pervasive problems of p values. Psychonom. Bull. Rev. 14, 779–804 (2007).

  26. 26.

    Jarosz, A. & Wiley, J. What are the odds? A practical guide to computing and reporting Bayes factors. J. Problem Solving 7, 2 (2014).

  27. 27.

    Jeffreys, H. Theory of Probability 3rd edn (Oxford Univ. Press, New York, NY, 1961).

  28. 28.

    Pine, A., Shiner, T., Seymour, B. & Dolan, R. J. Dopamine, time, and impulsivity in humans. J. Neurosci. 30, 8888–8896 (2010).

  29. 29.

    Pessiglione, M., Seymour, B., Flandin, G., Dolan, R. J. & Frith, C. D. Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442, 1042–1045 (2006).

  30. 30.

    Ferenczi, E. A. et al. Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science 351, aac9698 (2016).

  31. 31.

    Bartra, O., McGuire, J. T. & Kable, J. W. The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage 76, 412–427 (2013).

  32. 32.

    Clithero, J. A. & Rangel, A. Informatic parcellation of the network involved in the computation of subjective value. Soc. Cogn. Affect. Neurosci. 9, 1289–1302 (2014).

  33. 33.

    McClure, S. M., Laibson, D. I., Loewenstein, G. & Cohen, J. D. Separate neural systems value immediate and delayed monetary rewards. Science 306, 503–507 (2004).

  34. 34.

    Bodi, N. et al. Reward-learning and the novelty-seeking personality: a between- and within-subjects study of the effects of dopamine agonists on young Parkinson’s patients. Brain 132, 2385–2395 (2009).

  35. 35.

    Joel, D. et al. Sex beyond the genitalia: the human brain mosaic. Proc. Natl Acad. Sci. USA 112, 15468–15473 (2015).

  36. 36.

    Glezerman, M. Yes, there is a female and a male brain: morphology versus functionality. Proc. Natl Acad. Sci. USA 113, E1971 (2016).

  37. 37.

    Dittrich, M. & Leipold, K. Gender differences in time preferences. Econ. Lett. 122, 413–415 (2014).

  38. 38.

    Kitayama, S. et al. The dopamine D4 receptor gene (DRD4) moderates cultural difference in independent versus interdependent social orientation. Psychol. Sci. 25, 1169–1177 (2014).

  39. 39.

    Bergemann, N., Kopitz, J., Kress, K. R. & Frick, A. Plasma amisulpride levels in schizophrenia or schizoaffective disorder. Eur. Neuropsychopharmacol. 14, 245–250 (2004).

  40. 40.

    Andersen, S. L. & Teicher, M. H. Sex differences in dopamine receptors and their relevance to ADHD. Neurosci. Biobehav. Rev. 24, 137–141 (2000).

  41. 41.

    Abbas, A. I. et al. Amisulpride is a potent 5-HT7 antagonist: relevance for antidepressant actions in vivo. Psychopharmacology 205, 119–128 (2009).

  42. 42.

    Joutsa, J. et al. Dopaminergic function and intertemporal choice. Transl. Psychiatr. 5, e520 (2015).

  43. 43.

    Geurts, D. E., Huys, Q. J., den Ouden, H. E. & Cools, R. Serotonin and aversive Pavlovian control of instrumental behavior in humans. J. Neurosci. 33, 18932–18939 (2013).

  44. 44.

    Hebart, M. N. & Glascher, J. Serotonin and dopamine differentially affect appetitive and aversive general Pavlovian-to-instrumental transfer. Psychopharmacology 232, 437–451 (2015).

  45. 45.

    Gasbarri, A. & Pompili, A. Serotonergic 5-HT7 receptors and cognition. Rev. Neurosci. 25, 311–323 (2014).

  46. 46.

    Clissold, K. A., Choi, E. & Pratt, W. E. Serotonin 1A, 1B, and 7 receptors of the rat medial nucleus accumbens differentially regulate feeding, water intake, and locomotor activity. Pharmacol. Biochem. Behav. 112, 96–103 (2013).

  47. 47.

    Toubia, O., Johnson, E., Evgeniou, T. & Delquie, P. Dynamic experiments for estimating preferences: an adaptive method of eliciting time and risk parameters. Manage. Sci. 59, 613–640 (2013).

  48. 48.

    Kahnt, T. & Tobler, P. N. Dopamine regulates stimulus generalization in the human hippocampus. eLife 5, e12678 (2016).

  49. 49.

    Cools, R., Gibbs, S. E., Miyakawa, A., Jagust, W. & D’Esposito, M. Working memory capacity predicts dopamine synthesis capacity in the human striatum. J. Neurosci. 28, 1208–1212 (2008).

  50. 50.

    Landau, S. M., Lal, R., O’Neil, J. P., Baker, S. & Jagust, W. J. Striatal dopamine and working memory. Cereb. Cortex 19, 445–454 (2009).

Download references


The authors thank L. Horvath and K. Treiber for help with data collection. This work was supported by grants PP00P1_128574, PP00P1_150739, 00014_165884, CRSII3_141965 (PNT) and 320030_143443 (ARB; PIs: C. Ruff and T. Hare) from the Swiss National Science Foundation, a research credit of the University of Zurich to C.J.B. (FK-16-016) and a Marie Curie International Incoming Fellowship PIIF-GA-2012-327196 to A.R.B. All funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information


  1. Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, 8006, Zurich, Switzerland

    • Alexander Soutschek
    • , Christopher J. Burke
    • , Anjali Raja Beharelle
    • , Robert Schreiber
    • , Susanna C. Weber
    • , Iliana I. Karipidis
    • , Jolien ten Velden
    •  & Philippe N. Tobler
  2. Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, 8032, Zurich, Switzerland

    • Iliana I. Karipidis
  3. Neuroscience Center Zurich, University of Zurich, Swiss Federal Institute of Technology Zurich, 8057, Zurich, Switzerland

    • Iliana I. Karipidis
    •  & Philippe N. Tobler
  4. Max-Planck-Institute for Psycholinguistics, 6525 XD, Nijmegen, Netherlands

    • Jolien ten Velden
  5. Department of Epileptology, University Hospital Bonn, 53105, Bonn, Germany

    • Bernd Weber
  6. Center for Economics and Neuroscience, University of Bonn, 53127, Bonn, Germany

    • Bernd Weber
  7. Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, 8032, Zurich, Switzerland

    • Helene Haker
  8. Comparative Psychology, Institute of Experimental Psychology, Heinrich Heine University, 40225, Düsseldorf, Germany

    • Tobias Kalenscher


  1. Search for Alexander Soutschek in:

  2. Search for Christopher J. Burke in:

  3. Search for Anjali Raja Beharelle in:

  4. Search for Robert Schreiber in:

  5. Search for Susanna C. Weber in:

  6. Search for Iliana I. Karipidis in:

  7. Search for Jolien ten Velden in:

  8. Search for Bernd Weber in:

  9. Search for Helene Haker in:

  10. Search for Tobias Kalenscher in:

  11. Search for Philippe N. Tobler in:


A.S., C.J.B., A.R.B., S.C.W., B.W., T.K. and P.N.T. designed the study. A.S., C.J.B., A.R.B., R.S., J.t.V. and H.H. performed the research. A.S., C.J.B. and I.I.K. analysed the data. A.S. and P.N.T. wrote the manuscript. C.J.B., A.R.B., R.S., S.C.W., I.I.K., J.t.V., H.H., B.W. and T.K. edited and approved the final version of the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Alexander Soutschek.

Electronic supplementary material

  1. Supplementary Information

    Supplementary Figures 1–3

  2. Life Sciences Reporting Summary

    Life Sciences Reporting Summary

About this article

Publication history






Further reading