Perspective

Language, mind and brain

Received:
Accepted:
Published online:

Abstract

Language serves as a cornerstone of human cognition. However, our knowledge about its neural basis is still a matter of debate, partly because ‘language’ is often ill-defined. Rather than equating language with ‘speech’ or ‘communication’, we propose that language is best described as a biologically determined computational cognitive mechanism that yields an unbounded array of hierarchically structured expressions. The results of recent brain imaging studies are consistent with this view of language as an autonomous cognitive mechanism, leading to a view of its neural organization, whereby language involves dynamic interactions of syntactic and semantic aspects represented in neural networks that connect the inferior frontal and superior temporal cortices functionally and structurally.

  • Subscribe to Nature Human Behaviour for full access:

    $99

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    Ackermann, H., Hage, S. R. & Ziegler, W. Brain mechanisms of acoustic communication in humans and nonhuman primates: an evolutionary perspective. Behav. Brain Sci. 37, 529–604 (2014).

  2. 2.

    Chomsky, N. Syntactic Structures (Mouton, The Hague, Paris, 1957).

  3. 3.

    Chomsky, N. The Minimalist Program (MIT Press, Cambridge, MA, 1995).

  4. 4.

    Berwick, R. C., Friederici, A. D., Chomsky, N. & Bolhuis, J. J. Evolution, brain, and the nature of language. Trends Cogn. Sci. 17, 89–98 (2013).

  5. 5.

    Chomsky, N., Huybregts, R. & van Riemsdijk, H. Noam Chomsky on the Generative Enterprise (Foris, Dordrecht, 1982).

  6. 6.

    Bolhuis, J. J., Tattersall, I., Chomsky, N. & Berwick, R. C. How could language have evolved? PLoS Biol. 12, e1001934 (2014).

  7. 7.

    Huybregts, M. A. C., Berwick, R. C. & Bolhuis, J. J. The language within. Science 352, 1286 (2016).

  8. 8.

    Huybregts, M. A. C. Phonemic clicks and the mapping asymmetry: how language emerged and speech developed. Neurosci. Biobehav. Rev. https://doi.org/10.1016/j.neuborev.2017.01.041 (2017).

  9. 9.

    Embick, D., Marantz., A., Yasushi, M., O’Neil Wayne & Kuniyoshi, L. S. A syntactic specialization for Broca’s area. Proc. Natl. Acad. Sci. USA 7, 6150–6154 (2000).

  10. 10.

    Moro, A. et al. Syntax and the brain: disentangling grammar by selective anomalies. NeuroImage 13, 110–118 (2001).

  11. 11.

    Yang, C., Crain, S., Berwick, R. C., Chomsky, N. & Bolhuis, J. J. The growth of language: Universal Grammar, experience, and principles of computation. Neurosci. Biobehav. Rev. https://doi.org/10.1016/j.neubiorev.2016.12.023 (2017).

  12. 12.

    Crain, S., Koring, L. & Thornton, R. Language acquisition from a biolinguistic perspective. Neurosci. Biobehav. Rev. https://doi.org/10.1016/j.neubiorev.2016.09.004 (2017).

  13. 13.

    Chomsky, N. Cartesian Linguistics (Harper and Row, New York, 1966).

  14. 14.

    Moro, A. Impossible Languages (MIT Press, Cambridge, MA, 2016).

  15. 15.

    Moro, A. The Boundaries of Babel 2nd ed. (MIT Press, Cambridge, MA, 2015).

  16. 16.

    Musso, M. et al. Broca’s area and the language instinct. Nat. Neurosci. 7, 774–781 (2003).

  17. 17.

    Tettamanti, M. et al. Neural correlates for the acquisition of natural language syntax. NeuroImage 17, 700–709 (2002).

  18. 18.

    Opitz, B. & Friederici, A. D. Brain correlates of language learning: the neuronal dissociation of rule-based versus similarity-based learning. J. Neurosci. 24, 8436–8440 (2004).

  19. 19.

    Zaccarella, E. & Friederici, A. D. Merge in the human brain: a sub-region based functional investigation in the left pars opercularis. Front. Psychol. 6, 1818 (2015).

  20. 20.

    Zaccarella, E. & Friederici, A. D. Reflections of word processing in the insular cortex: a sub-regional parcellation based functional assessment. Brain Lang. 142, 1–7 (2015).

  21. 21.

    Sanides, F. The architecture of the human frontal lobe and the relation to its functional differentiation. Int. J. Neurol. 5, 247–261 (1962).

  22. 22.

    Friederici, A. D. Processing local transitions versus long-distance syntactic hierarchies. Trends Cogn. Sci. 8, 245–247 (2004).

  23. 23.

    Amunts, K. & Zilles, K. Architecture and organizational principles of Broca’s region. Trends Cogn. Sci. 16, 418–426 (2012).

  24. 24.

    Friederici, A. D. The brain basis of language processing: from structure to function. Physiol. Rev. 91, 1357–1392 (2011).

  25. 25.

    Hagoort, P. Nodes and networks in the neural architecture for language: Broca’s region and beyond. Curr. Opin. Neurobiol. 28, 136–141 (2014).

  26. 26.

    Makuuchi, M., Bahlmann, J., Anwander, A. & Friederici, A. D. Segregating the core computational faculty of human language from working memory. Proc. Natl Acad. Sci. USA 106, 8362–8367 (2009).

  27. 27.

    Goucha, T. B. & Friederici, A. D. The language skeleton after dissecting meaning: a functional segregation within Broca’s area. NeuroImage 114, 294–302 (2015).

  28. 28.

    Thompson-Schill, S. L., D’Esposito, M., Aguirre, G. K. & Farah, M. J. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc. Natl Acad. Sci. USA 94, 14792–14797 (1997).

  29. 29.

    Fiez, J. A. Phonology, semantics, and the role of the left inferior prefrontal cortex. Hum. Brain Mapp. 5, 79–83 (1997).

  30. 30.

    Démonet, J.-F., Thierry, G. & Cardebat, D. Renewal of the neurophysiology of language: functional neuroimaging. Physiol. Rev. 85, 49–95 (2005).

  31. 31.

    Price, C. J. The anatomy of language: a review of 100 fMRI studies published in 2009. Ann. NY Acad. Sci. 119, 62–88 (2010).

  32. 32.

    Bornkessel, I., Zyssett, S., Friederici, A. D., von Cramon, D. Y. & Schlesewsky, M. Who did what to whom? The neural basis of argument hierarchies during language comprehension. NeuroImage 26, 221–233 (2005).

  33. 33.

    Friederici, A. D., Fiebach, C. J., Schlesewsky, M., Bornkessel, I. & von Cramon, D. Y. Processing linguistic complexity and grammaticality in the left frontal cortex. Cereb. Cortex 16, 1709–1717 (2006).

  34. 34.

    Newman, S. D., Ikuta, T. & Burns, T. The effect of semantic relatedness on syntactic analysis: an fMRI study. Brain Lang. 113, 51–58 (2010).

  35. 35.

    Santi, A. & Grodzinsky, Y. fMRI adaptation dissociates syntactic complexity dimensions. NeuroImage 51, 1285–1293 (2010).

  36. 36.

    Tyler, L. K. et al. Preserving syntactic processing across the adult life span: the modulation of the frontotemporal language system in the context of age-related atrophy. Cereb. Cortex 20, 352–364 (2010).

  37. 37.

    Ben-Shachar, M., Hendler, T., Kahn, I., Ben-Bashat, D. & Grodzinsky, Y. The neural reality of syntactic transformations: Evidence from functional magnetic resonance imaging. Psychol. Sci. 14, 433–440 (2003).

  38. 38.

    Röder, B., Stock, O., Neville, H., Bien, S. & Rösler, F. Brain activation modulated by the comprehension of normal and pseudo-word sentences of different processing demands: a functional magnetic resonance imaging study. NeuroImage 15, 1003–1014 (2002).

  39. 39.

    Kinno, R., Kawamura, M., Shioda, S. & Sakai, K. L. Neural correlates of noncanonical syntactic processing revealed by a picture-sentence matching task. Hum. Brain Mapp. 29, 1015–1027 (2008).

  40. 40.

    Zaccarella, E. & Friederici, A. D. The neurobiological nature of syntactic hierarchies. Neurosci. Biobehav. Rev. https://doi.org/10.1016/j.neubiorev.2016.07.038 (2016).

  41. 41.

    Friederici, A. D., Makuuchi, M. & Bahlmann, J. The role of the posterior superior temporal cortex in sentence comprehension. NeuroReport 20, 563–568 (2009).

  42. 42.

    Den Ouden, D. B. et al. Network modulation during complex syntactic processing. NeuroImage 59, 815–823 (2012).

  43. 43.

    Makuuchi, M. & Friederici, A. D. Hierarchical functional connectivity between the core language system and the working memory system. Cortex 49, 2416–2423 (2013).

  44. 44.

    Ding, N., Melloni, L., Zhang, H., Tian, X. & Poeppel, D. Cortical tracking of hierarchical linguistic structures in connected speech. Nat. Neurosci. 19, 158–164 (2015).

  45. 45.

    Friederici, A. D., Bahlmann, J., Heim, S., Schubotz, R. I. & Anwander, A. The brain differentiates human and non-human grammars: Functional localization and structural connectivity. Proc. Natl Acad. Sci. USA 103, 2458–2463 (2006).

  46. 46.

    Catani, M., Jones, D. K. & Ffytche, D. H. Perisylvian language networks of the human brain. Annals Neurol. 57, 8–16 (2005).

  47. 47.

    Anwander, A., Tittgemeyer, M., von Cramon, D. Y., Friederici, A. D. & Knösche, T. R. Connectivity-based parcellation of Broca’s area. Cereb. Cortex 17, 816–825 (2007).

  48. 48.

    Skeide, M., Brauer, J. & Friederici, A. D. Brain functional and structural predictors of language performance. Cereb. Cortex 26, 2127–2139 (2016).

  49. 49.

    Wilson, S. M. et al. Neural correlates of syntactic processing in the nonfluent variant of primary progressive aphasia. J. Neurosci. 30, 16845–16854 (2010).

  50. 50.

    Davis, M. H. & Gaskell, M. G. A complementary systems account of word learning: neural and behavioural evidence. Phil. Trans. Royal Soc. B 364, 3773–3800 (2009).

  51. 51.

    Binder, J. R., Desai, R. H., Graves, W. W. & Conant, L. L. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex 19, 2767–2796 (2009).

  52. 52.

    McCarthy, G., Nobre, A. C., Bentin, S. & Spencer, D. D. Language-related field potentials in the anterior-medial temporal-lobe. 1. Intracranial distribution and neural generators. J. Neurosci. 15, 1080–1089 (1995).

  53. 53.

    Bierwisch, M. Formal and lexical semantics. Linguistische Berichte 80, 3–17 (1982).

  54. 54.

    Jackendoff, R. Semantics and Cognition (MIT Press, Cambridge, MA, 1983).

  55. 55.

    Collins, A. M. & Loftus, E. F. Spreading activation theory of semantic processing. Physiol. Rev. 82, 407–428 (1975).

  56. 56.

    Patterson, K., Nestor, P. J. & Rogers, T. T. Where do you know what you know? The representation of semantic knowledge in the human brain. Nat. Rev. Neurosci. 8, 976–987 (2007).

  57. 57.

    Bemis, D. K. & Pylkkänen, L. Simple composition: a magnetoencephalography investigation into the comprehension of minimal linguistic phrases. J. Neurosci. 31, 2801–2814 (2011).

  58. 58.

    Bemis, D. K. & Pylkkänen, L. Basic linguistic composition recruits the left anterior temporal lobe and left angular gyrus during both listening and reading. Cereb. Cortex 23, 1859–1873 (2013).

  59. 59.

    Bookheimer, S. Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annu. Rev. Neurosci. 25, 151–188 (2002).

  60. 60.

    Kuperberg, G. R. et al. Common and distinct neural substrates for pragmatic, semantic, and syntactic processing of spoken sentences: an fMRI study. J. Cogn. Neurosci. 12, 321–341 (2000).

  61. 61.

    Saur, D. et al. Ventral and dorsal pathways for language. Proc. Natl Acad. Sci. USA 105, 18035–18040 (2008).

  62. 62.

    Turken, A. U. & Dronkers, N. F. The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Front. Systems Neurosci. 5, 1 (2011).

  63. 63.

    Catani, M. & Mesulam, M. M. The arcuate fascicle and the disconnection theme in language and aphasia: history and current state. Cortex 44, 953–961 (2008).

  64. 64.

    Duffau, H. The anatomo-functional connectivity of language revisited new insights provided by electrostimulation and tractography. Neuropsychologia 46, 927–934 (2008).

  65. 65.

    Chierchia, G. Logic in Grammar: Polarity, Free Choice, and Intervention (Oxford Univ. Press, Oxford, 2013).

  66. 66.

    Tettamanti, M. et al. Negation in the brain: modulating action representations. NeuroImage 43, 358–367 (2008).

  67. 67.

    Chomsky, N. in From Grammar to Meaning: The Spontaneous Logicality of Language (eds Caponigro, I. & Cecchetto, C.) (Cambridge Univ. Press, Cambridge, 2013).

  68. 68.

    Perani, D. et al. Neural language networks at birth. Proc. Natl Acad. Sci. USA 108, 16056–16061 (2011).

  69. 69.

    Wake, H., Lee, P. R. & Fields, D. Control of local protein synthesis and initial events in myelination by action potentials. Science 333, 1647–1651 (2011).

  70. 70.

    Nave, K.-A. & Werner, H. B. Myelination of the nervous system: mechanisms and functions. Annu. Rev. Cell Dev. Biol. 30, 503–533 (2014).

  71. 71.

    Pujol, J. et al. Myelination of language-related areas in the developing brain. Neurology 66, 339–343 (2006).

  72. 72.

    Lebel, C., Walker, L., Leemans, A., Phillips, L. & Beaulieu, C. Microstructural maturation of the human brain from childhood to adulthood. NeuroImage 40, 1044–1055 (2008).

  73. 73.

    Lebel, C. et al. Diffusion tensor imaging of white matter tract evolution over the lifespan. NeuroImage 60, 340–352 (2012).

  74. 74.

    Dubois, J. et al. Asynchrony of the early maturation of white matter bundles in healthy infants: quantitative landmarks revealed noninvasively by diffusion tensor imaging. Hum. Brain Mapp. 29, 14–27 (2008).

  75. 75.

    Brauer, J., Anwander, A. & Friederici, A. D. Neuroanatomical prerequisites for language functions in the maturing brain. Cereb. Cortex 21, 459–466 (2011).

  76. 76.

    Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Functional Connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995).

  77. 77.

    Lohmann, G. et al. Setting the frame: the human brain activates a basic low-frequency network for language processing. Cereb. Cortex 20, 1286–1292 (2010).

  78. 78.

    Xiao, Y., Friederici, A. D., Margulies, D. S. & Brauer, J. Development of a selective left-hemispheric fronto-temporal network for processing syntactic complexity in language. Neuropsychologia 83, 274–282 (2016).

  79. 79.

    Dehaene-Lambertz, G., Dehaene, S. & Hertz-Pannier, L. Functional neuroimaging of speech perception in infants. Science 298, 2013–2015 (2002).

  80. 80.

    Kuhl, P. K. et al. Infants show a facilitation effect for native language phonetic perception between 6 and 12 months. Dev. Sci. 9, F13–F21 (2006).

  81. 81.

    Gervain, J., Berent, I. & Werker, J. F. Binding at birth: the newborn brain detects identity relations and sequential position in speech. J. Cogn. Neurosci. 24, 564–574 (2012).

  82. 82.

    Friederici, A. D., Mueller, J. L. & Oberecker, R. Precursors to natural grammar learning: preliminary evidence from 4-month-old infants. PLoS ONE 6, e17920 (2011).

  83. 83.

    Friedrich, M., Wilhelm, I., Born, J. & Friederici, A. D. Generalization of word meanings during infant sleep. Nat. Commun. 6, 6004 (2015).

  84. 84.

    Skeide, M. A., Brauer, J. & Friederici, A. D. Syntax gradually segregates from semantics in the developing brain. NeuroImage 100, 206–111 (2014).

  85. 85.

    Friederici, A. D. Children’s sensitivity to function words during sentence comprehension. Linguistics 21, 717–739 (1983).

  86. 86.

    Amunts, K., Schleicher, A., Ditterich, A. & Zilles, K. Broca’s region: cytoarchitectonic asymmetry and developmental changes. J. Comp. Neurol. 465, 72–89 (2003).

  87. 87.

    Skeide, M. A. & Friederici, A. D. The ontogeny of the cortical language network. Nat. Rev. Neurosci. 17, 323–332 (2016).

  88. 88.

    Meyer, L., Obleser, J., Anwander, A. & Friederici, A. D. Linking ordering in Broca’s area to storage in left temporo-parietal regions: the case of sentence processing. NeuroImage 62, 1987–1998 (2012).

  89. 89.

    Grossman, M. et al. Age-related changes in working memory during sentence comprehension: an fMRI study. NeuroImage 15, 302–317 (2002).

  90. 90.

    Fengler, A., Meyer, L. & Friederici, A. D. How the brain attunes to sentence processing: relating behavior, structure, and function. NeuroImage 129, 268–278 (2016).

  91. 91.

    Berwick, R. C. & Chomsky, N. Why Only Us (MIT Press, Cambridge, MA, 2016).

  92. 92.

    Bolhuis, J. J., Okanoya, K. & Scharff, C. Twitter evolution: converging mechanisms in birdsong and human speech. Nat. Rev. Neurosci. 11, 747–759 (2010).

  93. 93.

    Gentner, T. Q., Fenn, K. M., Margoliash, D. & Nusbaum, H. C. Recursive syntactic pattern learning by songbirds. Nature 440, 1204–1207 (2006).

  94. 94.

    Abe, K. & Watanabe, D. Songbirds possess the spontaneous ability to discriminate syntactic rules. Nat. Neurosci. 14, 1067–1074 (2011).

  95. 95.

    Bolhuis, J. J. & Everaert, M. (eds) Birdsong, Speech & Language. Exploring the Evolution of Mind and Brain (MIT Press, Cambridge, MA, 2013).

  96. 96.

    Berwick, R. C., Okanoya, K., Beckers, G. J. L. & Bolhuis, J. J. Songs to syntax: the linguistics of birdsong. Trends Cogn. Sci. 15, 113–121 (2011).

  97. 97.

    Beckers, G. J. L., Bolhuis, J. J., Okanoya, K. & Berwick, R. C. Birdsong neurolinguistics: songbird context-free grammar claim is premature. NeuroReport 23, 139–145 (2012).

  98. 98.

    Darwin, C. The Descent of Man, and Selection in Relation to Sex (John Murray, London, 1871).

  99. 99.

    Pearce, J. M. in Communication and Language Ch. 8, 251–283 (Lawrence Erlbaum Associates, Hillsdale, NJ, 1987.

  100. 100.

    Fitch, W. T. & Hauser, M. D. Computational constraints on syntactic processing in a nonhuman primate. Science 303, 377–380 (2004).

  101. 101.

    Wilson, B. et al. Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans. Nat. Commun. 6, 8901 (2015).

  102. 102.

    Terrace, H. S., Petitto, L. A., Sanders, R. J. & Bever, T. G. Can an ape create a sentence? Science 206, 891–902 (1979).

  103. 103.

    Yang, C. D. Ontogeny and phylogeny of language. Proc. Natl Acad. Sci. USA 110, 6324–6327 (2013).

  104. 104.

    Hauser, M., Chomsky, N. & Fitch, W. The faculty of language: what is it, who has it, and how did it evolve? Science 298, 1569–1579 (2002).

  105. 105.

    Mueller, J. L., Friederici, A. D. & Männel, C. Auditory perception at the root of language learning. Proc. Natl Acad. Sci. USA 109, 15953–15958 (2012).

  106. 106.

    Saffran, J. R., Aslin, R. N. & Newport, E. L. Statistical learning by 8-month-old infants. Science 274, 1926–1928 (1996).

  107. 107.

    Gervain, J., Macagno, F., Cognoi, S., Peña, M. & Mehler, J. The neonate brain detects speech structure. Proc. Natl Acad. Sci. USA 105, 14222–14227 (2008).

  108. 108.

    Milne, A. E. et al. Evolutionary origins of non-adjacent sequence processing in primate brain potentials. Sci. Rep. 6, 36259 (2016).

  109. 109.

    Schenker, N. M. et al. Broca’s area homologue in chimpanzees (pan troglodytes): probabilistic mapping, asymmetry, and comparison to humans. Cereb. Cortex 20, 730–742 (2010).

  110. 110.

    Rilling, J. K. et al. The evolution of the arcuate fasciculus revealed with comparative DTI. Nat. Neurosci. 11, 426–428 (2008).

  111. 111.

    Neubert, F.-X., Mars, R. B., Thomas, A. G., Sallet, J. & Rushworth, M. F. S. Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex. Neuron 81, 700–713 (2014).

  112. 112.

    Cappa, S. F. Imaging semantics and syntax. NeuroImage 61, 427–431 (2012).

  113. 113.

    Ojemann, G., Ojemann, J., Lettich, E. & Berger, M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J. Neurosurg. 71, 316–326 (1989).

  114. 114.

    Giraud, A. L. & Poeppel, D. Cortical oscillations and speech processing: emerging computational principles and operations. Nat. Neurosci. 15, 511–517 (2012).

  115. 115.

    Nourski, K. V. et al. Temporal envelope of time-compressed speech represented in the human auditory cortex. J. Neurosci. 29, 15564–15574 (2009).

  116. 116.

    Bouchard, K.-E., Mesgarani, N., Johnson, K. & Chang, E.-F. Functional organization of human sensorimotor cortex for speech articulation. Nature 495, 327–332 (2013).

  117. 117.

    Mesgarani, N., Cheung, C., Johnson, K. & Chang, E.-F. Phonetic feature encoding in human superior temporal gyrus. Science 343, 1006–1010 (2014).

  118. 118.

    Kubanek, J., Brunner, P., Gunduz, A., Poeppel, D. & Schalk, G. The tracking of speech envelope in the human cortex. PLoS One 8, e53398 (2013).

  119. 119.

    Magrassi, L., Aromataris, G., Cabrini, A., Annovazzi-Lodi, V. & Moro, A. Sound representation in higher language areas during language generation. Proc. Natl Acad. Sci. USA 112, 1868–1873 (2015).

  120. 120.

    Meyer, L., Henry, M. J., Gaston, P., Schmuck, N. & Friederici, A. D. Linguistic bias modulates interpretation of speech via neural delta-band oscillations. Cereb. Cortex. 27, 4293–4302 (2016).

  121. 121.

    Clos, M., Amunts, K., Laird, A. R., Fox, P. T. & Eickhoff, S. B. Tackling the multifunctional nature of Broca’s region meta-analytically: co-activation-based parcellation of area 44. NeuroImage 83, 174–188 (2013).

  122. 122.

    Beckers, G. J. L., Berwick, R. C. & Bolhuis, J. J. Comparative analyses of speech and language converge on birds. Behav. Brain Sci. 37, 547–548 (2014).

  123. 123.

    Yang, C. D. Universal grammar, statistics or both? Trends Cogn. Sci. 8, 451–456 (2004).

  124. 124.

    Chomsky, N. Problems of projection. Lingua 130, 33–49 (2013).

  125. 125.

    Mishkin, M., Ungerleider, L. G. & Macko, K. A. Object vision and spatial vision — 2 cortical pathways. Trends Neurosci. 6, 414–417 (1983).

  126. 126.

    Rauschecker, J. P. & Tian, B. Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc. Natl Acad. Sci. USA 97, 11800–11806 (2000).

  127. 127.

    Rauschecker, J. P. & Scott, S. K. Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat. Neurosci. 12, 718–724 (2009).

  128. 128.

    Hickok, G. & Poeppel, D. Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition 92, 67–99 (2004).

  129. 129.

    Hickok, G. & Poeppel, D. The cortical organization of speech perception. Nat. Rev. Neurosci. 8, 393–402 (2007).

  130. 130.

    Wilson, S. M. et al. Syntactic processing depends on dorsal language tracts. Neuron 72, 397–403 (2011).

  131. 131.

    Saur, D. et al. Combining functional and anatomical connectivity reveals brain networks for auditor language comprehension. NeuroImage 49, 3187–3197 (2010).

  132. 132.

    Weiller, C. et al. How the ventral pathway got lost: and what its recovery might mean. Brain Lang. 118, 29–39 (2011).

  133. 133.

    Friederici, A. D. Language in our Brain: The Origins of a Uniquely Human Capacity (MIT Press, Cambridge, MA, in the press).

Download references

Acknowledgements

We are grateful to R. Huybregts for his comments on an earlier version of the manuscript. J.J.B. is part of the Consortium on Individual Development (CID), which is funded through the Gravitation program of the Dutch Ministry of Education, Culture, and Science and the Netherlands Organization for Scientific Research (NWO; grant number 024.001.003).

Author information

Affiliations

  1. Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany

    • Angela D. Friederici
  2. Department of Linguistics and Philosophy, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

    • Noam Chomsky
  3. Department of Electrical Engineering and Computer Science and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

    • Robert C. Berwick
  4. University School for Advanced Studies IUSS - Pavia, I-27100, Pavia, Italy

    • Andrea Moro
  5. Helmholtz Institute and Department of Psychology, Utrecht University, 3584 CH, Utrecht, The Netherlands

    • Johan J. Bolhuis
  6. Department of Zoology and St. Catharine’s College, University of Cambridge, Cambridge, CB2 3EH, UK

    • Johan J. Bolhuis

Authors

  1. Search for Angela D. Friederici in:

  2. Search for Noam Chomsky in:

  3. Search for Robert C. Berwick in:

  4. Search for Andrea Moro in:

  5. Search for Johan J. Bolhuis in:

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Angela D. Friederici.