Language, mind and brain

Abstract

Language serves as a cornerstone of human cognition. However, our knowledge about its neural basis is still a matter of debate, partly because ‘language’ is often ill-defined. Rather than equating language with ‘speech’ or ‘communication’, we propose that language is best described as a biologically determined computational cognitive mechanism that yields an unbounded array of hierarchically structured expressions. The results of recent brain imaging studies are consistent with this view of language as an autonomous cognitive mechanism, leading to a view of its neural organization, whereby language involves dynamic interactions of syntactic and semantic aspects represented in neural networks that connect the inferior frontal and superior temporal cortices functionally and structurally.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Structural connectivity between language regions.
Fig. 2: Brain recognition of impossible syntactic rules.
Fig. 3: Activation of phrase structure building during a merge computation.
Fig. 4: Fibre tract pathways in human and non-human primates.

References

  1. 1.

    Ackermann, H., Hage, S. R. & Ziegler, W. Brain mechanisms of acoustic communication in humans and nonhuman primates: an evolutionary perspective. Behav. Brain Sci. 37, 529–604 (2014).

    PubMed  Article  Google Scholar 

  2. 2.

    Chomsky, N. Syntactic Structures (Mouton, The Hague, Paris, 1957).

    Google Scholar 

  3. 3.

    Chomsky, N. The Minimalist Program (MIT Press, Cambridge, MA, 1995).

    Google Scholar 

  4. 4.

    Berwick, R. C., Friederici, A. D., Chomsky, N. & Bolhuis, J. J. Evolution, brain, and the nature of language. Trends Cogn. Sci. 17, 89–98 (2013).

    PubMed  Article  Google Scholar 

  5. 5.

    Chomsky, N., Huybregts, R. & van Riemsdijk, H. Noam Chomsky on the Generative Enterprise (Foris, Dordrecht, 1982).

    Google Scholar 

  6. 6.

    Bolhuis, J. J., Tattersall, I., Chomsky, N. & Berwick, R. C. How could language have evolved? PLoS Biol. 12, e1001934 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. 7.

    Huybregts, M. A. C., Berwick, R. C. & Bolhuis, J. J. The language within. Science 352, 1286 (2016).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Huybregts, M. A. C. Phonemic clicks and the mapping asymmetry: how language emerged and speech developed. Neurosci. Biobehav. Rev. https://doi.org/10.1016/j.neuborev.2017.01.041 (2017).

    PubMed  Google Scholar 

  9. 9.

    Embick, D., Marantz., A., Yasushi, M., O’Neil Wayne & Kuniyoshi, L. S. A syntactic specialization for Broca’s area. Proc. Natl. Acad. Sci. USA 7, 6150–6154 (2000).

    Article  Google Scholar 

  10. 10.

    Moro, A. et al. Syntax and the brain: disentangling grammar by selective anomalies. NeuroImage 13, 110–118 (2001).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Yang, C., Crain, S., Berwick, R. C., Chomsky, N. & Bolhuis, J. J. The growth of language: Universal Grammar, experience, and principles of computation. Neurosci. Biobehav. Rev. https://doi.org/10.1016/j.neubiorev.2016.12.023 (2017).

    Google Scholar 

  12. 12.

    Crain, S., Koring, L. & Thornton, R. Language acquisition from a biolinguistic perspective. Neurosci. Biobehav. Rev. https://doi.org/10.1016/j.neubiorev.2016.09.004 (2017).

    PubMed  Google Scholar 

  13. 13.

    Chomsky, N. Cartesian Linguistics (Harper and Row, New York, 1966).

    Google Scholar 

  14. 14.

    Moro, A. Impossible Languages (MIT Press, Cambridge, MA, 2016).

    Google Scholar 

  15. 15.

    Moro, A. The Boundaries of Babel 2nd ed. (MIT Press, Cambridge, MA, 2015).

    Google Scholar 

  16. 16.

    Musso, M. et al. Broca’s area and the language instinct. Nat. Neurosci. 7, 774–781 (2003).

    Article  CAS  Google Scholar 

  17. 17.

    Tettamanti, M. et al. Neural correlates for the acquisition of natural language syntax. NeuroImage 17, 700–709 (2002).

    PubMed  Article  Google Scholar 

  18. 18.

    Opitz, B. & Friederici, A. D. Brain correlates of language learning: the neuronal dissociation of rule-based versus similarity-based learning. J. Neurosci. 24, 8436–8440 (2004).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Zaccarella, E. & Friederici, A. D. Merge in the human brain: a sub-region based functional investigation in the left pars opercularis. Front. Psychol. 6, 1818 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Zaccarella, E. & Friederici, A. D. Reflections of word processing in the insular cortex: a sub-regional parcellation based functional assessment. Brain Lang. 142, 1–7 (2015).

    PubMed  Article  Google Scholar 

  21. 21.

    Sanides, F. The architecture of the human frontal lobe and the relation to its functional differentiation. Int. J. Neurol. 5, 247–261 (1962).

    Google Scholar 

  22. 22.

    Friederici, A. D. Processing local transitions versus long-distance syntactic hierarchies. Trends Cogn. Sci. 8, 245–247 (2004).

    PubMed  Article  Google Scholar 

  23. 23.

    Amunts, K. & Zilles, K. Architecture and organizational principles of Broca’s region. Trends Cogn. Sci. 16, 418–426 (2012).

    PubMed  Article  Google Scholar 

  24. 24.

    Friederici, A. D. The brain basis of language processing: from structure to function. Physiol. Rev. 91, 1357–1392 (2011).

    PubMed  Article  Google Scholar 

  25. 25.

    Hagoort, P. Nodes and networks in the neural architecture for language: Broca’s region and beyond. Curr. Opin. Neurobiol. 28, 136–141 (2014).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Makuuchi, M., Bahlmann, J., Anwander, A. & Friederici, A. D. Segregating the core computational faculty of human language from working memory. Proc. Natl Acad. Sci. USA 106, 8362–8367 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Goucha, T. B. & Friederici, A. D. The language skeleton after dissecting meaning: a functional segregation within Broca’s area. NeuroImage 114, 294–302 (2015).

    PubMed  Article  Google Scholar 

  28. 28.

    Thompson-Schill, S. L., D’Esposito, M., Aguirre, G. K. & Farah, M. J. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc. Natl Acad. Sci. USA 94, 14792–14797 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Fiez, J. A. Phonology, semantics, and the role of the left inferior prefrontal cortex. Hum. Brain Mapp. 5, 79–83 (1997).

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Démonet, J.-F., Thierry, G. & Cardebat, D. Renewal of the neurophysiology of language: functional neuroimaging. Physiol. Rev. 85, 49–95 (2005).

    PubMed  Article  Google Scholar 

  31. 31.

    Price, C. J. The anatomy of language: a review of 100 fMRI studies published in 2009. Ann. NY Acad. Sci. 119, 62–88 (2010).

    Article  Google Scholar 

  32. 32.

    Bornkessel, I., Zyssett, S., Friederici, A. D., von Cramon, D. Y. & Schlesewsky, M. Who did what to whom? The neural basis of argument hierarchies during language comprehension. NeuroImage 26, 221–233 (2005).

    PubMed  Article  Google Scholar 

  33. 33.

    Friederici, A. D., Fiebach, C. J., Schlesewsky, M., Bornkessel, I. & von Cramon, D. Y. Processing linguistic complexity and grammaticality in the left frontal cortex. Cereb. Cortex 16, 1709–1717 (2006).

    PubMed  Article  Google Scholar 

  34. 34.

    Newman, S. D., Ikuta, T. & Burns, T. The effect of semantic relatedness on syntactic analysis: an fMRI study. Brain Lang. 113, 51–58 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Santi, A. & Grodzinsky, Y. fMRI adaptation dissociates syntactic complexity dimensions. NeuroImage 51, 1285–1293 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Tyler, L. K. et al. Preserving syntactic processing across the adult life span: the modulation of the frontotemporal language system in the context of age-related atrophy. Cereb. Cortex 20, 352–364 (2010).

    PubMed  Article  Google Scholar 

  37. 37.

    Ben-Shachar, M., Hendler, T., Kahn, I., Ben-Bashat, D. & Grodzinsky, Y. The neural reality of syntactic transformations: Evidence from functional magnetic resonance imaging. Psychol. Sci. 14, 433–440 (2003).

    PubMed  Article  Google Scholar 

  38. 38.

    Röder, B., Stock, O., Neville, H., Bien, S. & Rösler, F. Brain activation modulated by the comprehension of normal and pseudo-word sentences of different processing demands: a functional magnetic resonance imaging study. NeuroImage 15, 1003–1014 (2002).

    PubMed  Article  Google Scholar 

  39. 39.

    Kinno, R., Kawamura, M., Shioda, S. & Sakai, K. L. Neural correlates of noncanonical syntactic processing revealed by a picture-sentence matching task. Hum. Brain Mapp. 29, 1015–1027 (2008).

    PubMed  Article  Google Scholar 

  40. 40.

    Zaccarella, E. & Friederici, A. D. The neurobiological nature of syntactic hierarchies. Neurosci. Biobehav. Rev. https://doi.org/10.1016/j.neubiorev.2016.07.038 (2016).

    PubMed  Google Scholar 

  41. 41.

    Friederici, A. D., Makuuchi, M. & Bahlmann, J. The role of the posterior superior temporal cortex in sentence comprehension. NeuroReport 20, 563–568 (2009).

    PubMed  Article  Google Scholar 

  42. 42.

    Den Ouden, D. B. et al. Network modulation during complex syntactic processing. NeuroImage 59, 815–823 (2012).

    Article  Google Scholar 

  43. 43.

    Makuuchi, M. & Friederici, A. D. Hierarchical functional connectivity between the core language system and the working memory system. Cortex 49, 2416–2423 (2013).

    PubMed  Article  Google Scholar 

  44. 44.

    Ding, N., Melloni, L., Zhang, H., Tian, X. & Poeppel, D. Cortical tracking of hierarchical linguistic structures in connected speech. Nat. Neurosci. 19, 158–164 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Friederici, A. D., Bahlmann, J., Heim, S., Schubotz, R. I. & Anwander, A. The brain differentiates human and non-human grammars: Functional localization and structural connectivity. Proc. Natl Acad. Sci. USA 103, 2458–2463 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Catani, M., Jones, D. K. & Ffytche, D. H. Perisylvian language networks of the human brain. Annals Neurol. 57, 8–16 (2005).

    Article  Google Scholar 

  47. 47.

    Anwander, A., Tittgemeyer, M., von Cramon, D. Y., Friederici, A. D. & Knösche, T. R. Connectivity-based parcellation of Broca’s area. Cereb. Cortex 17, 816–825 (2007).

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Skeide, M., Brauer, J. & Friederici, A. D. Brain functional and structural predictors of language performance. Cereb. Cortex 26, 2127–2139 (2016).

    PubMed  Article  Google Scholar 

  49. 49.

    Wilson, S. M. et al. Neural correlates of syntactic processing in the nonfluent variant of primary progressive aphasia. J. Neurosci. 30, 16845–16854 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Davis, M. H. & Gaskell, M. G. A complementary systems account of word learning: neural and behavioural evidence. Phil. Trans. Royal Soc. B 364, 3773–3800 (2009).

    Article  Google Scholar 

  51. 51.

    Binder, J. R., Desai, R. H., Graves, W. W. & Conant, L. L. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex 19, 2767–2796 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    McCarthy, G., Nobre, A. C., Bentin, S. & Spencer, D. D. Language-related field potentials in the anterior-medial temporal-lobe. 1. Intracranial distribution and neural generators. J. Neurosci. 15, 1080–1089 (1995).

    CAS  PubMed  Google Scholar 

  53. 53.

    Bierwisch, M. Formal and lexical semantics. Linguistische Berichte 80, 3–17 (1982).

    Google Scholar 

  54. 54.

    Jackendoff, R. Semantics and Cognition (MIT Press, Cambridge, MA, 1983).

    Google Scholar 

  55. 55.

    Collins, A. M. & Loftus, E. F. Spreading activation theory of semantic processing. Physiol. Rev. 82, 407–428 (1975).

    Google Scholar 

  56. 56.

    Patterson, K., Nestor, P. J. & Rogers, T. T. Where do you know what you know? The representation of semantic knowledge in the human brain. Nat. Rev. Neurosci. 8, 976–987 (2007).

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Bemis, D. K. & Pylkkänen, L. Simple composition: a magnetoencephalography investigation into the comprehension of minimal linguistic phrases. J. Neurosci. 31, 2801–2814 (2011).

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Bemis, D. K. & Pylkkänen, L. Basic linguistic composition recruits the left anterior temporal lobe and left angular gyrus during both listening and reading. Cereb. Cortex 23, 1859–1873 (2013).

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Bookheimer, S. Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annu. Rev. Neurosci. 25, 151–188 (2002).

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Kuperberg, G. R. et al. Common and distinct neural substrates for pragmatic, semantic, and syntactic processing of spoken sentences: an fMRI study. J. Cogn. Neurosci. 12, 321–341 (2000).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Saur, D. et al. Ventral and dorsal pathways for language. Proc. Natl Acad. Sci. USA 105, 18035–18040 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Turken, A. U. & Dronkers, N. F. The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Front. Systems Neurosci. 5, 1 (2011).

    Article  Google Scholar 

  63. 63.

    Catani, M. & Mesulam, M. M. The arcuate fascicle and the disconnection theme in language and aphasia: history and current state. Cortex 44, 953–961 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Duffau, H. The anatomo-functional connectivity of language revisited new insights provided by electrostimulation and tractography. Neuropsychologia 46, 927–934 (2008).

    PubMed  Article  Google Scholar 

  65. 65.

    Chierchia, G. Logic in Grammar: Polarity, Free Choice, and Intervention (Oxford Univ. Press, Oxford, 2013).

    Google Scholar 

  66. 66.

    Tettamanti, M. et al. Negation in the brain: modulating action representations. NeuroImage 43, 358–367 (2008).

    PubMed  Article  Google Scholar 

  67. 67.

    Chomsky, N. in From Grammar to Meaning: The Spontaneous Logicality of Language (eds Caponigro, I. & Cecchetto, C.) (Cambridge Univ. Press, Cambridge, 2013).

    Google Scholar 

  68. 68.

    Perani, D. et al. Neural language networks at birth. Proc. Natl Acad. Sci. USA 108, 16056–16061 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Wake, H., Lee, P. R. & Fields, D. Control of local protein synthesis and initial events in myelination by action potentials. Science 333, 1647–1651 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Nave, K.-A. & Werner, H. B. Myelination of the nervous system: mechanisms and functions. Annu. Rev. Cell Dev. Biol. 30, 503–533 (2014).

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Pujol, J. et al. Myelination of language-related areas in the developing brain. Neurology 66, 339–343 (2006).

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Lebel, C., Walker, L., Leemans, A., Phillips, L. & Beaulieu, C. Microstructural maturation of the human brain from childhood to adulthood. NeuroImage 40, 1044–1055 (2008).

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Lebel, C. et al. Diffusion tensor imaging of white matter tract evolution over the lifespan. NeuroImage 60, 340–352 (2012).

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Dubois, J. et al. Asynchrony of the early maturation of white matter bundles in healthy infants: quantitative landmarks revealed noninvasively by diffusion tensor imaging. Hum. Brain Mapp. 29, 14–27 (2008).

    PubMed  Article  Google Scholar 

  75. 75.

    Brauer, J., Anwander, A. & Friederici, A. D. Neuroanatomical prerequisites for language functions in the maturing brain. Cereb. Cortex 21, 459–466 (2011).

    PubMed  Article  Google Scholar 

  76. 76.

    Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Functional Connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995).

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Lohmann, G. et al. Setting the frame: the human brain activates a basic low-frequency network for language processing. Cereb. Cortex 20, 1286–1292 (2010).

    PubMed  Article  Google Scholar 

  78. 78.

    Xiao, Y., Friederici, A. D., Margulies, D. S. & Brauer, J. Development of a selective left-hemispheric fronto-temporal network for processing syntactic complexity in language. Neuropsychologia 83, 274–282 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Dehaene-Lambertz, G., Dehaene, S. & Hertz-Pannier, L. Functional neuroimaging of speech perception in infants. Science 298, 2013–2015 (2002).

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Kuhl, P. K. et al. Infants show a facilitation effect for native language phonetic perception between 6 and 12 months. Dev. Sci. 9, F13–F21 (2006).

    PubMed  Article  Google Scholar 

  81. 81.

    Gervain, J., Berent, I. & Werker, J. F. Binding at birth: the newborn brain detects identity relations and sequential position in speech. J. Cogn. Neurosci. 24, 564–574 (2012).

    PubMed  Article  Google Scholar 

  82. 82.

    Friederici, A. D., Mueller, J. L. & Oberecker, R. Precursors to natural grammar learning: preliminary evidence from 4-month-old infants. PLoS ONE 6, e17920 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Friedrich, M., Wilhelm, I., Born, J. & Friederici, A. D. Generalization of word meanings during infant sleep. Nat. Commun. 6, 6004 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Skeide, M. A., Brauer, J. & Friederici, A. D. Syntax gradually segregates from semantics in the developing brain. NeuroImage 100, 206–111 (2014).

    Article  Google Scholar 

  85. 85.

    Friederici, A. D. Children’s sensitivity to function words during sentence comprehension. Linguistics 21, 717–739 (1983).

    Article  Google Scholar 

  86. 86.

    Amunts, K., Schleicher, A., Ditterich, A. & Zilles, K. Broca’s region: cytoarchitectonic asymmetry and developmental changes. J. Comp. Neurol. 465, 72–89 (2003).

    PubMed  Article  Google Scholar 

  87. 87.

    Skeide, M. A. & Friederici, A. D. The ontogeny of the cortical language network. Nat. Rev. Neurosci. 17, 323–332 (2016).

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Meyer, L., Obleser, J., Anwander, A. & Friederici, A. D. Linking ordering in Broca’s area to storage in left temporo-parietal regions: the case of sentence processing. NeuroImage 62, 1987–1998 (2012).

    PubMed  Article  Google Scholar 

  89. 89.

    Grossman, M. et al. Age-related changes in working memory during sentence comprehension: an fMRI study. NeuroImage 15, 302–317 (2002).

    PubMed  Article  Google Scholar 

  90. 90.

    Fengler, A., Meyer, L. & Friederici, A. D. How the brain attunes to sentence processing: relating behavior, structure, and function. NeuroImage 129, 268–278 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Berwick, R. C. & Chomsky, N. Why Only Us (MIT Press, Cambridge, MA, 2016).

    Google Scholar 

  92. 92.

    Bolhuis, J. J., Okanoya, K. & Scharff, C. Twitter evolution: converging mechanisms in birdsong and human speech. Nat. Rev. Neurosci. 11, 747–759 (2010).

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Gentner, T. Q., Fenn, K. M., Margoliash, D. & Nusbaum, H. C. Recursive syntactic pattern learning by songbirds. Nature 440, 1204–1207 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Abe, K. & Watanabe, D. Songbirds possess the spontaneous ability to discriminate syntactic rules. Nat. Neurosci. 14, 1067–1074 (2011).

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Bolhuis, J. J. & Everaert, M. (eds) Birdsong, Speech & Language. Exploring the Evolution of Mind and Brain (MIT Press, Cambridge, MA, 2013).

    Google Scholar 

  96. 96.

    Berwick, R. C., Okanoya, K., Beckers, G. J. L. & Bolhuis, J. J. Songs to syntax: the linguistics of birdsong. Trends Cogn. Sci. 15, 113–121 (2011).

    PubMed  Article  Google Scholar 

  97. 97.

    Beckers, G. J. L., Bolhuis, J. J., Okanoya, K. & Berwick, R. C. Birdsong neurolinguistics: songbird context-free grammar claim is premature. NeuroReport 23, 139–145 (2012).

    PubMed  Article  Google Scholar 

  98. 98.

    Darwin, C. The Descent of Man, and Selection in Relation to Sex (John Murray, London, 1871).

    Google Scholar 

  99. 99.

    Pearce, J. M. in Communication and Language Ch. 8, 251–283 (Lawrence Erlbaum Associates, Hillsdale, NJ, 1987.

    Google Scholar 

  100. 100.

    Fitch, W. T. & Hauser, M. D. Computational constraints on syntactic processing in a nonhuman primate. Science 303, 377–380 (2004).

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Wilson, B. et al. Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans. Nat. Commun. 6, 8901 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Terrace, H. S., Petitto, L. A., Sanders, R. J. & Bever, T. G. Can an ape create a sentence? Science 206, 891–902 (1979).

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Yang, C. D. Ontogeny and phylogeny of language. Proc. Natl Acad. Sci. USA 110, 6324–6327 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Hauser, M., Chomsky, N. & Fitch, W. The faculty of language: what is it, who has it, and how did it evolve? Science 298, 1569–1579 (2002).

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Mueller, J. L., Friederici, A. D. & Männel, C. Auditory perception at the root of language learning. Proc. Natl Acad. Sci. USA 109, 15953–15958 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Saffran, J. R., Aslin, R. N. & Newport, E. L. Statistical learning by 8-month-old infants. Science 274, 1926–1928 (1996).

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Gervain, J., Macagno, F., Cognoi, S., Peña, M. & Mehler, J. The neonate brain detects speech structure. Proc. Natl Acad. Sci. USA 105, 14222–14227 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Milne, A. E. et al. Evolutionary origins of non-adjacent sequence processing in primate brain potentials. Sci. Rep. 6, 36259 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Schenker, N. M. et al. Broca’s area homologue in chimpanzees (pan troglodytes): probabilistic mapping, asymmetry, and comparison to humans. Cereb. Cortex 20, 730–742 (2010).

    PubMed  Article  Google Scholar 

  110. 110.

    Rilling, J. K. et al. The evolution of the arcuate fasciculus revealed with comparative DTI. Nat. Neurosci. 11, 426–428 (2008).

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Neubert, F.-X., Mars, R. B., Thomas, A. G., Sallet, J. & Rushworth, M. F. S. Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex. Neuron 81, 700–713 (2014).

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Cappa, S. F. Imaging semantics and syntax. NeuroImage 61, 427–431 (2012).

    PubMed  Article  Google Scholar 

  113. 113.

    Ojemann, G., Ojemann, J., Lettich, E. & Berger, M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J. Neurosurg. 71, 316–326 (1989).

    CAS  PubMed  Article  Google Scholar 

  114. 114.

    Giraud, A. L. & Poeppel, D. Cortical oscillations and speech processing: emerging computational principles and operations. Nat. Neurosci. 15, 511–517 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Nourski, K. V. et al. Temporal envelope of time-compressed speech represented in the human auditory cortex. J. Neurosci. 29, 15564–15574 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. 116.

    Bouchard, K.-E., Mesgarani, N., Johnson, K. & Chang, E.-F. Functional organization of human sensorimotor cortex for speech articulation. Nature 495, 327–332 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Mesgarani, N., Cheung, C., Johnson, K. & Chang, E.-F. Phonetic feature encoding in human superior temporal gyrus. Science 343, 1006–1010 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Kubanek, J., Brunner, P., Gunduz, A., Poeppel, D. & Schalk, G. The tracking of speech envelope in the human cortex. PLoS One 8, e53398 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Magrassi, L., Aromataris, G., Cabrini, A., Annovazzi-Lodi, V. & Moro, A. Sound representation in higher language areas during language generation. Proc. Natl Acad. Sci. USA 112, 1868–1873 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120.

    Meyer, L., Henry, M. J., Gaston, P., Schmuck, N. & Friederici, A. D. Linguistic bias modulates interpretation of speech via neural delta-band oscillations. Cereb. Cortex. 27, 4293–4302 (2016).

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Clos, M., Amunts, K., Laird, A. R., Fox, P. T. & Eickhoff, S. B. Tackling the multifunctional nature of Broca’s region meta-analytically: co-activation-based parcellation of area 44. NeuroImage 83, 174–188 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Beckers, G. J. L., Berwick, R. C. & Bolhuis, J. J. Comparative analyses of speech and language converge on birds. Behav. Brain Sci. 37, 547–548 (2014).

    PubMed  Article  Google Scholar 

  123. 123.

    Yang, C. D. Universal grammar, statistics or both? Trends Cogn. Sci. 8, 451–456 (2004).

    PubMed  Article  Google Scholar 

  124. 124.

    Chomsky, N. Problems of projection. Lingua 130, 33–49 (2013).

    Article  Google Scholar 

  125. 125.

    Mishkin, M., Ungerleider, L. G. & Macko, K. A. Object vision and spatial vision — 2 cortical pathways. Trends Neurosci. 6, 414–417 (1983).

    Article  Google Scholar 

  126. 126.

    Rauschecker, J. P. & Tian, B. Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc. Natl Acad. Sci. USA 97, 11800–11806 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. 127.

    Rauschecker, J. P. & Scott, S. K. Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat. Neurosci. 12, 718–724 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    Hickok, G. & Poeppel, D. Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition 92, 67–99 (2004).

    PubMed  Article  Google Scholar 

  129. 129.

    Hickok, G. & Poeppel, D. The cortical organization of speech perception. Nat. Rev. Neurosci. 8, 393–402 (2007).

    CAS  PubMed  Article  Google Scholar 

  130. 130.

    Wilson, S. M. et al. Syntactic processing depends on dorsal language tracts. Neuron 72, 397–403 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Saur, D. et al. Combining functional and anatomical connectivity reveals brain networks for auditor language comprehension. NeuroImage 49, 3187–3197 (2010).

    PubMed  Article  Google Scholar 

  132. 132.

    Weiller, C. et al. How the ventral pathway got lost: and what its recovery might mean. Brain Lang. 118, 29–39 (2011).

    PubMed  Article  Google Scholar 

  133. 133.

    Friederici, A. D. Language in our Brain: The Origins of a Uniquely Human Capacity (MIT Press, Cambridge, MA, in the press).

Download references

Acknowledgements

We are grateful to R. Huybregts for his comments on an earlier version of the manuscript. J.J.B. is part of the Consortium on Individual Development (CID), which is funded through the Gravitation program of the Dutch Ministry of Education, Culture, and Science and the Netherlands Organization for Scientific Research (NWO; grant number 024.001.003).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Angela D. Friederici.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Friederici, A.D., Chomsky, N., Berwick, R.C. et al. Language, mind and brain. Nat Hum Behav 1, 713–722 (2017). https://doi.org/10.1038/s41562-017-0184-4

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing