Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dopaminergic medication increases reliance on current information in Parkinson’s disease

Abstract

The neurotransmitter dopamine is crucial for decision-making under uncertainty, but its computational role is still a subject of intense debate. To test its potential roles, we invited patients with Parkinson’s disease (PD), who have less internally generated dopamine, to participate in a visual decision-making task in which uncertainty in both prior and current sensory information was varied. Behaviour during these tasks is often predicted by Bayesian statistics. We found that many aspects of uncertainty processing were conserved in PD patients: they could learn the prior uncertainty and utilize both prior and current sensory information. As predicted by prominent theories, we found that dopaminergic medication influenced the weight given to sensory information. However, as PD patients learned, this bias disappeared. In addition, throughout the experiment the patients exhibited lower sensitivity to current sensory uncertainty compared with age-matched controls. Our results provide empirical evidence for the idea that dopamine levels, which are affected by PD and the drugs used for its treatment, influence the reliance on new information.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup.
Figure 2: Relative weight given to current information (sensory weight).
Figure 3: Sensitivity to likelihood uncertainty, separated by population type.
Figure 4: Reaction to trial-by-trial changes in likelihood uncertainty.

Similar content being viewed by others

References

  1. Vilares, I. & Kording, K. Bayesian models: the structure of the world, uncertainty, behavior, and the brain. Ann. NY Acad. Sci. 1224, 22–39 (2011).

    Article  PubMed  Google Scholar 

  2. Kording, K. P. & Wolpert, D. M. Bayesian integration in sensorimotor learning. Nature 427, 244–247 (2004).

    Article  PubMed  Google Scholar 

  3. Corlett, P. R., Frith, C. D. & Fletcher, P. C. From drugs to deprivation: a Bayesian framework for understanding models of psychosis. Psychopharmacology 206, 515–530 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vilares, I., Howard, J. D., Fernandes, H. L., Gottfried, J. A. & Kording, K. P. Differential representations of prior and likelihood uncertainty in the human brain. Curr. Biol. 22, 1641–1648 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hsu, M., Bhatt, M., Adolphs, R., Tranel, D. & Camerer, C. F. Neural systems responding to degrees of uncertainty in human decision-making. Science 310, 1680–1683 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Poldrack, R. A. et al. The neural correlates of motor skill automaticity. J. Neurosci. 25, 5356–5364 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lehericy, S. et al. Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc. Natl Acad. Sci. USA 102, 12566–12571 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kish, S. J., Shannak, K. & Hornykiewicz, O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. N. Engl. J. Med. 318, 876–880 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Fiorillo, C. D., Tobler, P. N. & Schultz, W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299, 1898–1902 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Friston, K. J. et al. Dopamine, affordance and active inference. PLoS Comp. Biol. 8, e1002327 (2012).

    Article  CAS  Google Scholar 

  11. Friston, K. The free-energy principle: a rough guide to the brain? Trends Cogn. Sci. 13, 293–301 (2009).

    Article  PubMed  Google Scholar 

  12. Berridge, K. C. & Robinson, T. E. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Rev. 28, 309–369 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Wise, R. A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Montague, P. R., Dayan, P. & Sejnowski, T. J. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci. 16, 1936–1947 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Kapur, S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry 160, 13–23 (2003).

    Article  PubMed  Google Scholar 

  17. McClure, S. M., Daw, N. D. & Montague, P. R. A computational substrate for incentive salience. Trends Neurosci. 26, 423–428 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Galea, J. M., Bestmann, S., Beigi, M., Jahanshahi, M. & Rothwell, J. C. Action reprogramming in Parkinson’s disease: response to prediction error is modulated by levels of dopamine. J. Neurosci. 32, 542–550 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beeler, J. A., Daw, N., Frazier, C. R. M. & Zhuang, X. X. Tonic dopamine modulates exploitation of reward learning. Front Behav. Neurosci. 4, 170 (2010).

    Article  PubMed  Google Scholar 

  20. Dayan, P. & Balleine, B. W. Reward, motivation, and reinforcement learning. Neuron 36, 285–298 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Frank, M. J., Seeberger, L. C. & O’Reilly, R. C. By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306, 1940–1943 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Cools, R., Barker, R. A., Sahakian, B. J. & Robbins, T. W. l-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson’s disease. Neuropsychologia 41, 1431–1441 (2003).

    Article  PubMed  Google Scholar 

  23. Brand, M. et al. Decision-making impairments in patients with Parkinson’s disease. Behav. Neurol. 15, 77–85 (2004).

    Article  PubMed  Google Scholar 

  24. Tassinari, H., Hudson, T. E. & Landy, M. S. Combining priors and noisy visual cues in a rapid pointing task. J. Neurosci. 26, 10154–10163 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Olanow, C. W., Obeso, J. A. & Stocchi, F. Continuous dopamine-receptor treatment of Parkinson’s disease: scientific rationale and clinical implications. Lancet Neurol. 5, 677–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Shiner, T. et al. Dopamine and performance in a reinforcement learning task: evidence from Parkinson’s disease. Brain 135, 1871–1883 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Frank, M. J. Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated parkinsonism. J. Cogn. Neurosci. 17, 51–72 (2005).

    Article  PubMed  Google Scholar 

  28. Perugini, A., Ditterich, J. & Basso, M. A. Patients with Parkinson’s disease show impaired use of priors in conditions of sensory uncertainty. Curr. Biol. 26, 1902–1910 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Berniker, M., Voss, M. & Kording, K. Learning priors for Bayesian computations in the nervous system. PLoS ONE 5, e12686 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fernandes, H. L., Stevenson, I. H., Vilares, I. & Kording, K. P. The generalization of prior uncertainty during reaching. J. Neurosci. 34, 11470–11484 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kishida, K. T. et al. Sub-second dopamine detection in human striatum. PLoS ONE 6, e23291 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ma, W. J., Beck, J. M., Latham, P. E. & Pouget, A. Bayesian inference with probabilistic population codes. Nat. Neurosci. 9, 1432–1438 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. O'Reilly, J. X., Jbabdi, S., Rushworth, M. F. & Behrens, T. E. Brain systems for probabilistic and dynamic prediction: computational specificity and integration. PLoS Biol. 11, e1001662 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Klein, L. Pickering, S. Toledo, C. López-Ortiz and especially T. Simuni for help in recruiting the PD patients. We also thank P. Dayan, H. Fernandes and M. Basso for useful comments on the manuscript. I.V. was supported by the Portuguese Science Foundation, the Gulbenkian Foundation and the Champalimaud Foundation (PhD fellowship SFRH/BD/33272/2007), and, more recently, by a Principal Research Fellowship from the Wellcome Trust to Professor Read Montague. This work was also supported by NIH grant 2R01NS063399 (to K.P.K.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both authors designed the experiment. I.V. ran the experiments and analysed the data (with the supervision of K.P.K.). Both authors wrote the manuscript.

Corresponding author

Correspondence to Iris Vilares.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Table 1, Supplementary Figures 1–7, Supplementary Results, Supplementary References. (PDF 1348 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilares, I., Kording, K. Dopaminergic medication increases reliance on current information in Parkinson’s disease. Nat Hum Behav 1, 0129 (2017). https://doi.org/10.1038/s41562-017-0129

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-017-0129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing