Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regional rare-earth element supply and demand balanced with circular economy strategies

Abstract

The growing dependence of society on rare-earth elements poses a challenge to achieving a just low-carbon transition globally. While circular economy strategies have gained attention, their specific impacts remain unmeasured. Here we present an integrated model that quantifies how circular economy strategies can reshape global supply chains of the critical rare-earth elements such as neodymium, praseodymium, dysprosium and terbium. The model considers both in-ground and in-use stocks across ten regions from 2021 to 2050. The projections include the full deployment of three widely accepted climate scenarios. We find a considerable mismatch between in-ground stocks, supply and demand at specific region and element levels, with the mismatch for heavy rare-earth elements as a key obstacle for achieving net-zero emissions targets. We suggest that, as in-ground stocks decline among mineral suppliers, the accumulation of in-use stocks in consuming regions can foster a more balanced and less polarized geopolitical landscape for rare-earth elements, and circular economy strategies can lead to an increase of 701 kt secondary supply and a decrease of 2,306 kt demand within the next three decades. Implementing these circular economy strategies will require international cooperation in the governance of rare-earth elements amid sustainable transition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Framework of DIRECCT.
Fig. 2: RE-leveraged and pledged GHG reduction in the NZE scenario.
Fig. 3: The demand, supply and reserve of REEs at global and regional levels in the baseline scenario.
Fig. 4: Global shift of REEs from in-ground stocks to in-use stocks in the NZE scenario.
Fig. 5: Material flows of the REEs and regional interdependence in the NZE scenario under different CE scenarios.

Similar content being viewed by others

Data availability

The data generated and/or analysed in this study are provided in supplementary information and in the figshare repository (https://doi.org/10.6084/m9.figshare.24471670). The published data sources underlying the parameters used in this study are documented in supplementary information. Source data are provided with this paper. Any additional data are available from the corresponding authors.

Code availability

The code used to manipulate the data and generate the results is available from the figshare repository (https://doi.org/10.6084/m9.figshare.24471568).

References

  1. Robinson, M. & Shine, T. Achieving a climate justice pathway to 1.5 °C. Nat. Clim. Change 8, 564–569 (2018).

    Article  Google Scholar 

  2. Carley, S. & Konisky, D. M. The justice and equity implications of the clean energy transition. Nat. Energy 5, 569–577 (2020).

    Article  Google Scholar 

  3. Sovacool, B. K. et al. Sustainable minerals and metals for a low-carbon future. Science 367, 30–33 (2020).

    Article  Google Scholar 

  4. Li, J. S. et al. Critical rare-earth elements mismatch global wind-power ambitions. One Earth 3, 116–125 (2020).

    Article  Google Scholar 

  5. Fishman, T. & Graedel, T. E. Impact of the establishment of US offshore wind power on neodymium flows. Nat. Sustain. 2, 332–338 (2019).

    Article  Google Scholar 

  6. Binnemans, K., McGuiness, P. & Jones, P. T. Rare-earth recycling needs market intervention. Nat. Rev. Mater. 6, 459–461 (2021).

    Article  Google Scholar 

  7. Building Resilient Supply Chains, Revitalizing American Manufacturing, and Fostering Broad-based Growth (The White House, 2021); https://www.whitehouse.gov/wp-content/uploads/2021/06/100-day-supply-chain-review-report.pdf

  8. Critical Raw Materials Resilience: Charting a Path Towards Greater Security and Sustainability (European Commission, 2020); https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0474&from=EN

  9. The Role of Critical Minerals in Clean Energy Transitions (IEA, 2021); https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions

  10. Gielen, D. & Lyons, M. Critical Materials for the Energy Transition: Rare Earth Elements (IRENA, 2022); https://www.irena.org/Technical-Papers/Rare-Earth-Elements

  11. Hund, K., Porta, D. L., Fabregas, T. P., Laing, T. & Drexhage, J. Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition (World Bank, 2020).

    Google Scholar 

  12. Gulley, A. L., Nassar, N. T. & Xun, S. China, the United States, and competition for resources that enable emerging technologies. Proc. Natl Acad. Sci. USA 115, 4111–4115 (2018).

    Article  Google Scholar 

  13. Akcil, A., Sun, Z. & Panda, S. COVID-19 disruptions to tech-metals supply are a wake-up call. Nature 587, 365–367 (2020).

    Article  Google Scholar 

  14. Du, X. & Graedel, T. E. Global in-use stocks of the rare earth elements: a first estimate. Environ. Sci. Technol. 45, 4096–4101 (2011).

    Article  Google Scholar 

  15. Gerst, M. D. & Graedel, T. E. In-use stocks of metals: status and implications. Environ. Sci. Technol. 42, 7038–7045 (2008).

    Article  Google Scholar 

  16. Chen, W. Q. & Graedel, T. E. In-use product stocks link manufactured capital to natural capital. Proc. Natl Acad. Sci. USA 112, 6265–6270 (2015).

    Article  Google Scholar 

  17. UNECE. Guidance for the Application of the United Nations Framework Classification for Mineral and Anthropogenic Resources in Europe (UNECE, 2022); https://unece.org/circular-economy/press/united-nations-framework-classification-resources-guidance-europe-gains

  18. Heidrich, O. et al. LAYERS: a decision-support tool to illustrate and assess the supply and value chain for the energy transition. Sustainability 14, 7120 (2022).

    Article  Google Scholar 

  19. Baars, J., Domenech, T., Bleischwitz, R., Melin, H. E. & Heidrich, O. Circular economy strategies for electric vehicle batteries reduce reliance on raw materials. Nat. Sustain. 4, 71–79 (2021).

    Article  Google Scholar 

  20. Schulze, R. & Buchert, M. Estimates of global REE recycling potentials from NdFeB magnet material. Resour. Conserv. Recycl. 113, 12–27 (2016).

    Article  Google Scholar 

  21. Geng, Y., Sarkis, J. & Bleischwitz, R. How to build a circular economy for rare-earth elements. Nature 619, 248–251 (2023).

    Article  Google Scholar 

  22. Hoenderdaal, S., Espinoza, L. T., Marscheider-Weidemann, F. & Graus, W. Can a dysprosium shortage threaten green energy technologies? Energy 49, 344–355 (2013).

    Article  Google Scholar 

  23. Zhou, B., Li, Z. & Chen, C. Global potential of rare earth resources and rare earth demand from clean technologies. Minerals 7, 203 (2017).

    Article  Google Scholar 

  24. Grandell, L. et al. Role of critical metals in the future markets of clean energy technologies. Renew. Energy 95, 53–62 (2016).

    Article  Google Scholar 

  25. Yao, T., Geng, Y., Sarkis, J., Xiao, S. & Gao, Z. Dynamic neodymium stocks and flows analysis in China. Resour. Conserv. Recycl. 174, 105752 (2021).

    Article  Google Scholar 

  26. Imholte, D. D. et al. An assessment of US rare earth availability for supporting US wind energy growth targets. Energy Policy 113, 294–305 (2018).

    Article  Google Scholar 

  27. Deetman, S., Pauliuk, S., van Vuuren, D. P., van der Voet, E. & Tukker, A. Scenarios for demand growth of metals in electricity generation technologies, cars, and electronic appliances. Environ. Sci. Technol. 52, 4950–4959 (2018).

    Article  Google Scholar 

  28. Rare Earths Outlook to 2030 20th edn (Roskill Information Services, 2021).

  29. Zeng, X. L., Ali, S. H., Tian, J. P. & Li, J. H. Mapping anthropogenic mineral generation in China and its implications for a circular economy .Nat. Commun. 11, 1544 (2020).

    Article  Google Scholar 

  30. Charpentier Poncelet, A. et al. Losses and lifetimes of metals in the economy. Nat. Sustain. 5, 717–726 (2022).

    Article  Google Scholar 

  31. Zeng, A. et al. Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages. Nat. Commun. 13, 1341 (2022).

    Article  Google Scholar 

  32. Law, Yao-Hua Politics could upend global trade in rare earth elements. Science 364, 114–115 (2019).

    Article  Google Scholar 

  33. Narula, K. et al. Ensuring Sustainable Supply of Critical Minerals for a Clean, Just and Inclusive Energy Transition (CSEP, 2023); https://t20ind.org/wp-content/uploads/2023/05/T20_PolicyBrief_TF4_CriticalMinerals.pdf

  34. Sturman, K., Loginova, J., Worden, S., Matanzima, J. & Arratia-Solar, A. Mission Critical: Strengthening Governance of Mineral Value Chains for the Energy Transition (EITI, 2022); https://eiti.org/sites/default/files/2022-10/EITI%20Mission%20Critical%20Report%202022.pdf

  35. Aligning Critical Raw Materials Development with Sustainable Development (United Nations, 2023); https://sdgs.un.org/sites/default/files/2023-06/2023%20Policy%20Brief%20Aligning%20CRMs-062823_0.pdf

  36. Nassar, N. T., Du, X. & Graedel, T. E. Criticality of the rare earth elements. J. Ind. Ecol. 19, 1044–1054 (2015).

    Article  Google Scholar 

  37. Golroudbary, S. R., Makarava, I., Kraslawski, A. & Repo, E. Global environmental cost of using rare earth elements in green energy technologies. Sci. Total Environ. 832, 155022 (2022).

    Article  Google Scholar 

  38. Ali, S. H. Social and environmental impact of the rare earth industries. Resources 3, 123–134 (2014).

    Article  Google Scholar 

  39. Packey, D. J. & Kingsnorth, D. The impact of unregulated ionic clay rare earth mining in China. Resour. Policy 48, 112–116 (2016).

    Article  Google Scholar 

  40. Chowdhury, N. A. et al. Sustainable recycling of rare-earth elements from NdFeB magnet swarf: techno-economic and environmental perspectives. ACS Sustain. Chem. Eng. 9, 15915–15924 (2021).

    Article  Google Scholar 

  41. Pauliuk, S. et al. Global scenarios of resource and emission savings from material efficiency in residential buildings and cars. Nat. Commun. 12, 5097 (2021).

    Article  Google Scholar 

  42. Zhong, X. et al. Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060. Nat. Commun. 12, 6126 (2021).

    Article  Google Scholar 

  43. Fujita, Y., McCall, S. K. & Ginosar, D. Recycling rare earths: perspectives and recent advances. MRS Bull. 47, 283–288 (2022).

    Article  Google Scholar 

  44. Nassar, N. T. et al. Evaluating the mineral commodity supply risk of the US manufacturing sector. Sci. Adv. 6, eaay8647 (2020).

    Article  Google Scholar 

  45. Concept Note: Global Alliance on Circular Economy and Resource Efficiency (GACERE): Towards Just Transitions (UNEP, 2021); https://wedocs.unep.org/bitstream/handle/20.500.11822/40298/GACERE_ConceptNote.pdf?sequence=1&isAllowed=y

  46. Wang, P., Wang, H. M., Chen, W. Q. & Pauliuk, S. Carbon neutrality needs a circular metal–energy nexus. Fundam. Res. 2, 392–395 (2022).

    Article  Google Scholar 

  47. Elshkaki, A. & Graedel, T. E. Dynamic analysis of the global metals flows and stocks in electricity generation technologies. J. Clean. Prod. 59, 260–273 (2013).

    Article  Google Scholar 

  48. Pathak, A. K. et al. Cerium: an unlikely replacement of dysprosium in high performance Nd-Fe-B permanent magnets. Adv. Mater. 27, 2663–2667 (2015).

    Article  Google Scholar 

  49. Babbitt, C. W., Althaf, S., Rios, F. C., Bilec, M. M. & Graedel, T. E. The role of design in circular economy solutions for critical materials. One Earth 4, 353–362 (2021).

    Article  Google Scholar 

  50. Rauch, J. N. Global mapping of Al, Cu, Fe, and Zn in-use stocks and in-ground resources. Proc. Natl Acad. Sci. USA 106, 18920–18925 (2009).

    Article  Google Scholar 

  51. Baars, J., Rajaeifar, M. A. & Heidrich, O. Quo vadis MFA? Integrated material flow analysis to support material efficiency. J. Ind. Ecol. 26, 1487–1503 (2022).

    Article  Google Scholar 

  52. Fu, X. et al. Perspectives on cobalt supply through 2030 in the face of changing demand. Environ. Sci. Technol. 54, 2985–2993 (2020).

    Article  Google Scholar 

  53. Habib, K. & Wenzel, H. Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling. J. Clean. Prod. 84, 348–359 (2014).

    Article  Google Scholar 

  54. Wang, Q.-C., Chen, W.-Q., Wang, P. & Dai, T. Illustrating the supply chain of dysprosium in China through material flow analysis. Resour. Conserv. Recycl. 184, 106417 (2022).

    Article  Google Scholar 

  55. Mineral Commodity Summaries 2023 (USGS, 2023); https://doi.org/10.3133/mcs2023

  56. World Energy Outlook 2021 (IEA, 2021); https://www.iea.org/reports/world-energy-outlook-2021

  57. Global Energy and Climate Model (IEA, 2022); https://www.iea.org/reports/global-energy-and-climate-model

  58. Pavel, C. C. et al. Role of substitution in mitigating the supply pressure of rare earths in electric road transport applications. Sustain. Mater. Technol. 12, 62–72 (2017).

    Google Scholar 

  59. Li, X.-Y., Ge, J.-P., Chen, W.-Q. & Wang, P. Scenarios of rare earth elements demand driven by automotive electrification in China: 2018–2030. Resour. Conserv. Recycl. 145, 322–331 (2019).

    Article  Google Scholar 

  60. Pavel, C. C. et al. Substitution strategies for reducing the use of rare earths in wind turbines. Resour. Policy 52, 349–357 (2017).

    Article  Google Scholar 

  61. Högberg S. et al. Direct reuse of rare earth permanent magnets—Wind turbine generator case study. 2016 XXII International Conference on Electrical Machines (ICEM) 1625–1629 (IEEE, 2016).

  62. Li, Z., Kedous-Lebouc, A., Dubus, J.-M., Garbuio, L. & Personnaz, S. Direct reuse strategies of rare earth permanent magnets for PM electrical machines—an overview study. Eur. Phys. J. Appl. Phys. 86, 20901 (2019).

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (72274187 to P.W., 71961147003 to W.-Q.C.), CAS IUE Research Program (no. IUE-JBGS-202202 to P.W.), Strategic Research and Consulting Project of Chinese Academy of Engineering (no. 2023-02JXZD-03 to W.-Q. C.), Research Project of Ganjiang Innovation Academy of Chinese Academy of Sciences (no. E355F004 to W.-Q. C.) and State Grid Project (no. 1400-202357639A-3-2-ZN to P.W.).

Author information

Authors and Affiliations

Authors

Contributions

P.W. and Y.-Y.Y. designed the research, with steering and supervision from W.-Q.C. and L.-H.C.; P.W., Y.-Y.Y. and O.H. contributed to the methodology; P.W., Y.-Y.Y., O.H., T.F. and L.-Y.C. conducted the analysis. P.W., Y.-Y.Y., O.H. and W.-Q.C. led the drafting of the manuscript. All authors contributed significantly to the final writing of the article.

Corresponding authors

Correspondence to Li-Hua Chen or Wei-Qiang Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Takuma Watari and Zongguo Wen for their contribution to the peer review of this work. Primary Handling Editor: Tamara Goldin, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables, methods and model validation.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Yang, YY., Heidrich, O. et al. Regional rare-earth element supply and demand balanced with circular economy strategies. Nat. Geosci. 17, 94–102 (2024). https://doi.org/10.1038/s41561-023-01350-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-023-01350-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing