Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coevolving aerodynamic and impact ripples on Earth

Abstract

Wind-blown sand creates multiscale bedforms on Earth, Mars and other planetary bodies. According to conventional wisdom, decametre-scale dunes and decimetre-scale ripples emerge via distinct mechanisms on Earth: a hydrodynamic instability related to a phase shift between the turbulent flow and the topography and a granular instability related to a synchronization of hopping grains with the topography. Here we report the reproducible creation of coevolving centimetre- and decimetre-scale ripples on fine-grained monodisperse sand beds in ambient air and low-pressure wind tunnels, revealing two adjacent mesoscale growth instabilities. Their morphological traits and our quantitative grain-scale numerical simulations authenticate the smaller structures as impact ripples but point at a hydrodynamic origin for the larger ones. This suggests that the aeolian transport layer would have to partially respond to the topography on a scale comparable to the average hop length, hence faster than previously thought, but consistent with the phase lag of the inferred aeolian sand flux relative to the wind. A corresponding hydrodynamic modelling supports the existence of aerodynamic ripples on Earth, connecting them to megaripples and to the debated Martian ripples. We thereby open a unified perspective for mesoscale granular bedforms found across the Solar System.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples and classification of mesoscale bedforms for a wide range of environmental conditions.
Fig. 2: Multiple growth instabilities in ambient air wind tunnel measurements.
Fig. 3: Estimating the subscale saturation length under ambient air conditions.
Fig. 4: Model predictions for ambient air conditions.

Similar content being viewed by others

Data availability

Source data for all main and supplementary figures are provided with the paper. All data generated by this study are available in the Texas Data Repository at https://doi.org/10.18738/T8/XA2LNX. The post-processed data are summarized in the Supplementary Information file (Supplementary Tables 15). Source data are provided with this paper.

Code availability

The code that extracts ripples’ wavelength from the pictures is provided with the paper. The code that integrates the equations of the hydrodynamic bedform model can be made available upon request from the authors.

References

  1. Hayes, A. G. Dunes across the solar system. Science 360, 960–961 (2018).

    Article  Google Scholar 

  2. Bourke, M. C. et al. Extraterrestrial dunes: an introduction to the special issue on planetary dune systems. Geomorphology 121, 1–14 (2010).

    Article  Google Scholar 

  3. Rasmussen, K. R., Valance, A. & Merrison, J. Laboratory studies of aeolian sediment transport processes on planetary surfaces. Geomorphology 244, 74–94 (2015).

    Article  Google Scholar 

  4. Diniega, S. et al. Our evolving understanding of aeolian bedforms, based on observation of dunes on different worlds. Aeolian Res. 26, 5–27 (2017).

    Article  Google Scholar 

  5. Charru, F., Andreotti, B. & Claudin, P. Sand ripples and dunes. Annu. Rev. Fluid Mech. 45, 469–493 (2013).

    Article  Google Scholar 

  6. Telfer, M. W. et al. Dunes on Pluto. Science 360, 992–997 (2018).

    Article  Google Scholar 

  7. Ewing, R. C. et al. Sedimentary processes of the Bagnold Dunes: implications for the eolian rock record of Mars. J. Geophys. Res. Planets 122, 2544–2573 (2017).

    Article  Google Scholar 

  8. Baker, M. M. et al. The Bagnold Dunes in southern summer: active sediment transport on Mars observed by the Curiosity rover. Geophys. Res. Lett. 45, 8853–8863 (2018).

    Article  Google Scholar 

  9. Siminovich, A. et al. Numerical study of shear stress distribution over sand ripples under terrestrial and Martian conditions. J. Geophys. Res. Planets 124, 175–185 (2019).

    Article  Google Scholar 

  10. Sullivan, R., Kok, J. F., Katra, I. & Yizhaq, H. A broad continuum of aeolian impact ripple morphologies on Mars is enabled by low wind dynamic pressures. J. Geophys. Res. Planets 125, e2020JE006485 (2020).

    Article  Google Scholar 

  11. Lorenz, R. D. Martian ripples making a splash. J. Geophys. Res. Planets 125, e2020JE006658 (2020).

    Article  Google Scholar 

  12. Lapotre, M. G. A. et al. Large wind ripples on Mars: a record of atmospheric evolution. Science 353, 55–58 (2016).

    Article  Google Scholar 

  13. Lapotre, M. G. A. et al. Morphologic diversity of Martian ripples: implications for large-ripple formation. Geophys. Res. Lett. 45, 10229–10239 (2018).

    Article  Google Scholar 

  14. Durán Vinent, O., Andreotti, B., Claudin, P. & Winter, C. A unified model of ripples and dunes in water and planetary environments. Nat. Geosci. 12, 345–350 (2019).

    Article  Google Scholar 

  15. Lapôtre, M. G. A., Ewing, R. C. & Lamb, M. P. An evolving understanding of enigmatic large ripples on Mars. J. Geophys. Res. Planets 126, e2020JE006729 (2021).

    Article  Google Scholar 

  16. Yizhaq, H. et al. Turbulent shear flow over large Martian ripples. J. Geophys. Res. Planets 126, e2020JE006515 (2021).

    Article  Google Scholar 

  17. Rubanenko, L., Lapôtre, M. G. A., Ewing, R. C., Fenton, L. K. & Gunn, A. A distinct ripple-formation regime on mars revealed by the morphometrics of barchan dunes. Nat. Commun. 13, 7156 (2022).

  18. Silvestro, S., Vaz, D. A., Yizhaq, H. & Esposito, F. Dune-like dynamic of martian aeolian large ripples. Geophys. Res. Lett. 43, 8384–8389 (2016).

  19. Bridges, N. T. et al. Planet-wide sand motion on Mars. Geology 40, 31–34 (2012).

    Article  Google Scholar 

  20. Balme, M., Berman, D. C., Bourke, M. C. & Zimbelman, J. R. Transverse aeolian ridges (TARs) on Mars. Geomorphology 101, 703–720 (2008).

  21. Zimbelman, J. R. Transverse aeolian ridges on Mars: first results from HiRISE images. Geomorphology 121, 22–29 (2010).

  22. Hugenholtz, C. H., Barchyn, T. E. & Boulding, A. Morphology of transverse aeolian ridges (tars) on Mars from a large sample: further evidence of a megaripple origin? Icarus 286, 193–201 (2017).

    Article  Google Scholar 

  23. Sullivan, R. et al. Wind-driven particle mobility on Mars: insights from Mars Exploration Rover observations at ‘El Dorado’ and surroundings at Gusev Crater. J. Geophys. Res. Planets 113, E06S07 (2008).

  24. Jerolmack, D. J., Mohrig, D., Grotzinger, J. P., Fike, D. A. & Watters, W. A. Spatial grain size sorting in eolian ripples and estimation of wind conditions on planetary surfaces: application to Meridiani Planum, Mars. J. Geophys. Res. Planets 111, E12S02 (2006).

  25. Weitz, C. M. et al. Sand grain sizes and shapes in eolian bedforms at Gale crater, Mars. Geophys. Res. Lett. 45, 9471–9479 (2018).

  26. Vaz, D. A., Silvestro, S., Chojnacki, M. & Silva, D. C. A. Constraining the mechanisms of aeolian bedform formation on mars through a global morphometric survey. Earth Planet. Sci. Lett. 614, 118196 (2023).

    Article  Google Scholar 

  27. Bagnold, R. A. The Physics of Blown Sand and Desert Dunes (Methuen, 1941).

  28. Southard, J. B. & Boguchwal, L. A. Bed configuration in steady unidirectional water flows; part 2, synthesis of flume data. J. Sediment. Res. 60, 658–679 (1990).

    Article  Google Scholar 

  29. Greeley, R. & Iversen, J. D. Wind as a Geological Process: on Earth, Mars, Venus and Titan (CUP Archive, 1987).

  30. Wilson, I. G. Aeolian bedforms—their development and origins. Sedimentology 19, 173–210 (1972).

    Article  Google Scholar 

  31. Abrams, J. & Hanratty, T. J. Relaxation effects observed for turbulent flow over a wavy surface. J. Fluid Mech. 151, 443–455 (1985).

    Article  Google Scholar 

  32. Frederick, K. A. & Hanratty, T. J. Velocity measurements for a turbulent nonseparated flow over solid waves. Exp. Fluids 6, 477–486 (1988).

    Article  Google Scholar 

  33. Claudin, P., Durán, O. & Andreotti, B. Dissolution instability and roughening transition. J. Fluid Mech. 832, R2 (2017).

  34. Ellwood, J. M., Evans, P. D. & Wilson, I. G. Small scale aeolian bedforms. J. Sediment. Res. 45, 554–561 (1975).

    Google Scholar 

  35. Walker, J. D. An Experimental Study of Wind Ripples. MSc thesis, Massachusetts Institute of Technology (1981); https://dspace.mit.edu/handle/1721.1/16156

  36. Schmerler, E., Katra, I., Kok, J. F., Tsoar, H. & Yizhaq, H. Experimental and numerical study of sharp’s shadow zone hypothesis on sand ripple wavelength. Aeolian Res. 22, 37–46 (2016).

    Article  Google Scholar 

  37. Cheng, H. et al. Experimental study of aeolian sand ripples in a wind tunnel. Earth Surf. Process. Landf. 43, 312–321 (2018).

    Article  Google Scholar 

  38. Andreotti, B., Claudin, P. & Pouliquen, O. Aeolian sand ripples: experimental study of fully developed states. Phys. Rev. Lett. 96, 028001 (2006).

    Article  Google Scholar 

  39. Sharp, R. P. Wind ripples. J. Geol. 71, 617–636 (1963).

    Article  Google Scholar 

  40. Cornish, V. On the formation of sand-dunes. Geogr. J. 9, 278–302 (1897).

    Article  Google Scholar 

  41. Seppälä, M. & Lindé, K. Wind tunnel studies of ripple formation. Geogr. Ann. Ser. A 60, 29–42 (1978).

  42. Ling, Y., Wu, Z. & Liu, S. A wind tunnel simulation of aeolian sand ripple formation. Acta Geogr. Sin. 53, 527–534 (1998).

    Google Scholar 

  43. Miller, J., Marshall, J. & Greeley, R. Wind Ripples in Low Density Atmospheres. Technical memo TM-89810 268–270 (NASA, 1987).

  44. Durán, O., Claudin, P. & Andreotti, B. Direct numerical simulations of aeolian sand ripples. Proc. Natl Acad. Sci. USA 111, 15665–15668 (2014).

    Article  Google Scholar 

  45. Fourrière, A., Claudin, P. & Andreotti, B. Bedforms in a turbulent stream: formation of ripples by primary linear instability and of dunes by nonlinear pattern coarsening. J. Fluid Mech. 649, 287–328 (2010).

    Article  Google Scholar 

  46. Colombini, M. & Stocchino, A. Ripple and dune formation in rivers. J. Fluid Mech. 673, 121–131 (2011).

    Article  Google Scholar 

  47. Rubin, D. M. & McCulloch, D. S. Single and superimposed bedforms: a synthesis of San Francisco Bay and flume observations. Sediment. Geol. 26, 207–231 (1980).

  48. Lapotre, M. G., Lamb, M. P. & McElroy, B. What sets the size of current ripples? Geology 45, 243–246 (2017).

    Article  Google Scholar 

  49. Grazer, R. A. Experimental Study of Current Ripples Using Medium Silt. Ph.D. thesis, Massachusetts Institute of Technology (1982).

  50. Yalin, M. S. On the determination of ripple geometry. J. Hydraul. Eng. 111, 1148–1155 (1985).

    Article  Google Scholar 

  51. Sauermann, G., Kroy, K. & Herrmann, H. J. A continuum saltation model for sand dunes. Phys. Rev. E 64, 031305 (2001).

    Article  Google Scholar 

  52. Durán, O., Claudin, P. & Andreotti, B. On aeolian transport: grain-scale interactions, dynamical mechanisms and scaling laws. Aeolian Res. 3, 243–270 (2011).

    Article  Google Scholar 

  53. Elbelrhiti, H., Claudin, P. & Andreotti, B. Field evidence for surface-wave-induced instability of sand dunes. Nature 437, 720–723 (2005).

    Article  Google Scholar 

  54. Andreotti, B., Claudin, P. & Pouliquen, O. Measurements of the aeolian sand transport saturation length. Geomorphology 123, 343–348 (2010).

    Article  Google Scholar 

  55. Selmani, H., Valance, A., Ould El Moctar, A., Dupont, P. & Zegadi, R. Aeolian sand transport in out-of-equilibrium regimes. Geophys. Res. Lett. 45, 1838–1844 (2018).

    Article  Google Scholar 

  56. Lü, P. et al. Direct validation of dune instability theory. Proc. Natl Acad. Sci. USA 118, e2024105118 (2021).

    Article  Google Scholar 

  57. Anderson, R. S. A theoretical model for aeolian impact ripples. Sedimentology 34, 943–956 (1987).

    Article  Google Scholar 

  58. Andreotti, B. A two-species model of aeolian sand transport. J. Fluid Mech. 510, 47–70 (2004).

    Article  Google Scholar 

  59. Lämmel, M., Rings, D. & Kroy, K. A two-species continuum model for aeolian sand transport. New J. Phys. 14, 093037 (2012).

    Article  Google Scholar 

  60. Lämmel, M., Dzikowski, K., Kroy, K., Oger, L. & Valance, A. Grain-scale modeling and splash parametrization for aeolian sand transport. Phys. Rev. E 95, 022902 (2017).

    Article  Google Scholar 

  61. Tholen, K., Pähtz, T., Kamath, S., Parteli, E. J. R. & Kroy, K. Anomalous scaling of aeolian sand transport reveals coupling to bed rheology. Phys. Rev. Lett. 130, 058204 (2023).

  62. Anderson, R. S. & Bunas, K. L. Grain size segregation and stratigraphy in aeolian ripples modelled with a cellular automaton. Nature 365, 740–743 (1993).

  63. Lämmel, M. et al. Aeolian sand sorting and megaripple formation. Nat. Phys. 14, 759–765 (2018).

    Article  Google Scholar 

  64. Tholen, K., Pähtz, T., Yizhaq, H., Katra, I. & Kroy, K. Megaripple mechanics: bimodal transport ingrained in bimodal sands. Nat. Commun. 13, 162 (2022).

  65. Yizhaq, H. A simple model of aeolian megaripples. Physica A 338, 211–217 (2004).

    Article  Google Scholar 

  66. Makse, H. A. Grain segregation mechanism in aeolian sand ripples. Eur. Phys. J. E 1, 127–135 (2000).

    Article  Google Scholar 

  67. Manukyan, E. & Prigozhin, L. Formation of aeolian ripples and sand sorting. Phys. Rev. E 79, 031303 (2009).

    Article  Google Scholar 

  68. Pye, K. & Tsoar, H. Aeolian Sand and Sand Dunes (Springer Science & Business Media, 2008).

  69. Lancaster, N. Geomorphology of Desert Dunes (Routledge, 2013).

  70. Yizhaq, H., Isenberg, O., Wenkart, R., Tsoar, H. & Karnieli, A. Morphology and dynamics of aeolian mega-ripples in Nahal Kasuy, southern Israel. Isr. J. Earth Sci. 57, 149–165 (2009).

    Article  Google Scholar 

  71. Katra, I. & Yizhaq, H. Intensity and degree of segregation in bimodal and multimodal grain size distributions. Aeolian Res. 27, 23–34 (2017).

    Article  Google Scholar 

  72. McKenna Neuman, C. & Bédard, O. A wind tunnel investigation of particle segregation, ripple formation and armouring within sand beds of systematically varied texture. Earth Surf. Process. Landf. 42, 749–762 (2017).

    Article  Google Scholar 

  73. Yizhaq, H., Katra, I., Kok, J. F. & Isenberg, O. Transverse instability of megaripples. Geology 40, 459–462 (2012).

    Article  Google Scholar 

  74. Pye, K. & Tsoar, H. Aeolian Sand and Sand Dunes (Springer, 2009).

  75. Katra, I., H, Y. & Kok, J. F. Mechanisms limiting the growth of aeolian megaripples. Geophys. Res. Lett. 41, 858–865 (2014).

    Article  Google Scholar 

  76. Andreotti, B., Claudin, P., Iversen, J. J., Merrison, J. P. & Rasmussen, K. R. A lower than expected saltation threshold at Martian pressure and below. Proc. Natl Acad. Sci. USA 118, e2012386118 (2021).

    Article  Google Scholar 

  77. Holstein-Rathlou, C. et al. An environmental wind tunnel facility for testing meteorological sensor systems. J. Atmos. Ocean. Technol. 31, 447–457 (2014).

    Article  Google Scholar 

  78. Pähtz, T. & Durán, O. Scaling laws for planetary sediment transport from dem-rans numerical simulations. J. Fluid Mech. 963, A20 (2023).

    Article  Google Scholar 

  79. Andreotti, B., Fourrière, A., Ould-Kaddour, F., Murray, B. & Claudin, P. Giant aeolian dune size determined by the average depth of the atmospheric boundary layer. Nature 457, 1120–1123 (2009).

    Article  Google Scholar 

  80. Kroy, K., Sauermann, G. & Herrmann, H. J. Minimal model for aeolian sand dunes. Phys. Rev. E 66, 031302 (2002).

    Article  Google Scholar 

  81. Kroy, K., Sauermann, G. & Herrmann, H. J. A minimal model for sand dunes. Phys. Rev. Lett. 88, 054301 (2002).

  82. Andreotti, B., Claudin, P. & Douady, S. Selection of dune shapes and velocities part 2: a two-dimensional modelling. Eur. Phys. J. B 28, 341–352 (2002).

    Article  Google Scholar 

  83. Miller, M., McCave, I. & Komar, P. Threshold of sediment motion under unidirectional currents. Sedimentology 24, 507–527 (1977).

    Article  Google Scholar 

  84. Greeley, R., Iversen, J., Pollack, J., Udovich, N. & White, B. Wind tunnel studies of Martian aeolian processes. Proc. R. Soc. Lond. A 341, 331–360 (1974).

    Article  Google Scholar 

  85. Jackson, P. S. & Hunt, J. C. R. Turbulent wind flow over a low hill. Q. J. R. Meteorolog. Soc. 101, 929–955 (1975).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Israel Science Foundation (ISF) (number 1270/20) for I.K., by the German–Israeli Foundation for Scientific Research and Development (GIF) (number 155-301.10/2018) for I.K. and K.K., by the National Natural Science Foundation of China (numbers 12272344, 12350710176) for T.P. and by the Texas A&M Engineering Experiment Station for O.D. This work has been funded by Europlanet grant number 871149 (project number: 20-EPN-054) for S.S., K.R.R., J.P.M. and G.F. Europlanet 2024 RI has received funding from the European Union’s Horizon 2020 research and innovation programme.

Author information

Authors and Affiliations

Authors

Contributions

I.K., H.Y., L.S. and N.S. designed and conducted the ambient air wind tunnel experiments; K.T. devised the theoretical approach; O.D. and K.T. performed the theoretical hydrodynamic bedform modelling; C.L. conducted the impact ripple simulations; T.P. conducted the grain-scale transport simulations; H.Y., I.K., S.S., K.R.R., J.P.M., J.J.I. and G.F. designed and conducted the low-pressure wind tunnel experiments; O.D. and K.T. analysed the data; K.T., K.K., T.P and O.D. wrote the paper. All authors discussed the results and implications and commented on the paper at all stages.

Corresponding authors

Correspondence to Thomas Pähtz, Orencio Durán or Itzhak Katra.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Mathieu Lapôtre, Clément Narteau and Nathalie Vriend for their contribution to the peer review of this work. Primary Handling Editor: Tamara Goldin, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods (sections 1 and 2), Figs. 1–10 and Tables 1–5.

Supplementary Video 1

Coevolution of impact and aerodynamic ripples in ambient air wind tunnel.

Supplementary Video 2

Time evolution of height profile in impact ripple simulation.

Supplementary Video 3

Grain-scale simulation of mature impact ripples.

Supplementary Code 1

Code to calculate ripples’ wavelengths from images.

Supplementary Code 2

Source data for supplementary figures.

Source data

Source Data Fig. 1

Statistical source data (plain text).

Source Data Fig. 2

Statistical source data (plain text).

Source Data Fig. 3

Statistical source data (plain text).

Source Data Fig. 4

Statistical source data (plain text).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yizhaq, H., Tholen, K., Saban, L. et al. Coevolving aerodynamic and impact ripples on Earth. Nat. Geosci. 17, 66–72 (2024). https://doi.org/10.1038/s41561-023-01348-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-023-01348-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing