Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recurrence time and size of Chilean earthquakes influenced by geological structure

Abstract

In 1960, the giant Valdivia earthquake (moment magnitude, Mw, 9.5), the largest earthquake ever recorded, struck the Chilean subduction zone, rupturing the entire depth of the seismogenic zone and extending for 1,000 km along strike. The first sign of new seismic energy release since 1960 occurred in 2017 with the Melinka earthquake (Mw 7.6), which affected only a portion of the deepest part of the seismogenic zone. Despite the recognition that rupture characteristics and rheology vary with depth, the mechanical controls behind such variations of earthquake size remain elusive. Here we build quasi-dynamic simulations of the seismic cycle in southern Chile including frictional and viscoelastic properties, drawing upon a compilation of geological and geophysical insights to explain the recurrence times of recent, historic, and palaeoseismic earthquakes and the distribution of fault slip and crustal deformation associated with the Melinka and Valdivia earthquakes. We find that the frictional and rheological properties of the forearc, which are primarily controlled by the geological structure and fluid distribution at the megathrust, govern the magnitude and recurrence patterns of earthquakes in Chile.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tectonic setting of the SCSZ.
Fig. 2: Summary of data acquired and set-up of the model.
Fig. 3: Fault dynamics and recurrence times at the SCSZ.
Fig. 4: Upper crust deformation.
Fig. 5: Conceptual model of the SCSZ integrating insights from quasi-dynamic simulation and compiled data.

Similar content being viewed by others

Data availability

The GPS data that support the findings of this study are available in the GNSS data repository of the Centro Sismologico Nacional, Chile (http://gps.csn.uchile.cl/data/). Uplift data after the Valdivia earthquake can be found at ref. 8 (https://doi.org/10.1130/0016-7606(1970)81[1001:MOTCEO]2.0.CO;2). Data of intertidal biotic indicators were obtained from ref. 50 (https://doi.org/10.1130/0016-7606(1970)81[1001:MOTCEO]2.0.CO;2). Thermal model, coseismic slip model and quasi-dynamic input files to be run using Unicycle are uploaded to https://doi.org/10.5281/zenodo.8435744. Specific results from the quasi-dynamic simulations are available from the corresponding author upon reasonable request.

Code availability

Quasi-dynamic simulations were computed using the code Unicycle5,85 (https://bitbucket.org/sbarbot/unicycle/src/master/). The code to process quasi-dynamic results is available from the corresponding author upon reasonable request.

References

  1. Lay, T. et al. Depth-varying rupture properties of subduction zone megathrust faults. J. Geophys. Res. Solid Earth 117, B04311 (2012).

    Article  Google Scholar 

  2. Scholz, C. H. Earthquakes and friction laws. Nature 391, 37–42 (1998).

    Article  Google Scholar 

  3. Saffer, D. M. & Tobin, H. J. Hydrogeology and mechanics of subduction zone forearcs: fluid flow and pore pressure. Annu Rev. Earth Planet Sci. 39, 157–186 (2011).

    Article  Google Scholar 

  4. Qiu, Q. & Barbot, S. Tsunami excitation in the outer wedge of global subduction zones. Earth Sci. Rev. 230, 104054 (2022).

    Article  Google Scholar 

  5. Barbot, S. Frictional and structural controls of seismic super-cycles at the Japan trench. Earth Planets Space 72, 63 (2020).

    Article  Google Scholar 

  6. Lay, T. The surge of great earthquakes from 2004 to 2014. Earth Planet. Sci. Lett. 409, 133–146 (2015).

    Article  Google Scholar 

  7. Ye, L., Lay, T., Kanamori, H., Yamazaki, Y. & Cheung, K. F. The 22 July 2020 Mw 7.8 Shumagin seismic gap earthquake: partial rupture of a weakly coupled megathrust. Earth Planet. Sci. Lett. 562, 116879 (2021).

  8. Plafker, G. & Savage, J. C. Mechanism of the Chilean earthquakes of May 21 and 22, 1960. Geol. Soc. Am. Bull. 81, 1001–1030 (1970).

    Article  Google Scholar 

  9. Ruiz, S. et al. Reawakening of large earthquakes in south central Chile: the 2016 Mw 7.6 Chiloé event. Geophys. Res. Lett. 44, 6633–6640 (2017).

    Article  Google Scholar 

  10. Quiero, F., Tassara, A., Iaffaldano, G. & Rabbia, O. Growth of Neogene Andes linked to changes in plate convergence using high-resolution kinematic models. Nat. Commun. 13, 1339 (2022).

    Article  Google Scholar 

  11. Hayes, G. P. et al. Slab2, a comprehensive subduction zone geometry model. Science 362, 58–61 (2018).

    Article  Google Scholar 

  12. Lange, D. et al. Seismicity and geometry of the South Chilean subduction zone (41.5° S–43.5° S): implications for controlling parameters. Geophys. Res. Lett. 34, L06311 (2007).

    Article  Google Scholar 

  13. Bohm, M. et al. The southern Andes between 36° and 40° S latitude: seismicity and average seismic velocities. Tectonophysics 356, 275–289 (2002).

    Article  Google Scholar 

  14. Contreras-Reyes, E., Flueh, E. R. & Grevemeyer, I. Tectonic control on sediment accretion and subduction off south central Chile: implications for coseismic rupture processes of the 1960 and 2010 megathrust earthquakes. Tectonics 29, TC6018 (2010).

    Article  Google Scholar 

  15. Bangs, N. L. et al. Basal accretion along the South Central Chilean margin and its relationship to great earthquakes. J. Geophys. Res. Solid Earth 125, e2020JB019861 (2020).

    Article  Google Scholar 

  16. Maksymowicz, A., Montecinos-Cuadros, D., Díaz, D., Segovia, M. J. & Reyes, T. Forearc density structure of the overriding plate in the northern area of the giant 1960 Valdivia earthquake. Solid Earth 13, 117–136 (2022).

    Article  Google Scholar 

  17. Maksymowicz, A. et al. Deep structure of the continental plate in the South-Central Chilean margin: metamorphic wedge and implications for megathrust earthquakes. J. Geophys. Res. Solid Earth 126, e2021JB021879 (2021).

  18. Scherwath, M. et al. Deep lithospheric structures along the southern central Chile margin from wide-angle P-wave modelling. Geophys. J. Int. 179, 579–600 (2009).

    Article  Google Scholar 

  19. Tassara, A. & Echaurren, A. Anatomy of the Andean subduction zone: three-dimensional density model upgraded and compared against global-scale models. Geophys. J. Int. 189, 161–168 (2012).

    Article  Google Scholar 

  20. Krawczyk, C. M. et al. in The Andes (eds Oncken, O. et al.) 171–192 (Springer, 2006); https://doi.org/10.1007/978-3-540-48684-8_8

  21. Dzierma, Y. et al. Seismic velocity structure of the slab and continental plate in the region of the 1960 Valdivia (Chile) slip maximum—insights into fluid release and plate coupling. Earth Planet. Sci. Lett. https://doi.org/10.1016/j.epsl.2012.02.006 (2012).

  22. Echaurren, A. et al. Fore-to-retroarc crustal structure of the North Patagonian margin: how is shortening distributed in Andean-type orogens?. Glob. Planet. Change 209, 103734 (2022).

    Article  Google Scholar 

  23. Cembrano, J., Hervé, F. & Lavenu, A. The Liquiñe Ofqui fault zone: a long-lived intra-arc fault system in southern Chile. Tectonophysics 259, 55–66 (1996).

    Article  Google Scholar 

  24. Barbot, S. Slow-slip, slow earthquakes, period-two cycles, full and partial ruptures, and deterministic chaos in a single asperity fault. Tectonophysics 768, 228171 (2019).

  25. Kukowski, N. & Oncken, O. in The Andes (eds Oncken, O. et al.) 217–236 (Springer, 2006); https://doi.org/10.1007/978-3-540-48684-8_10

  26. Genge, M. C. et al. The role of slab geometry in the exhumation of Cordilleran-type orogens and their forelands: insights from northern Patagonia. Geol. Soc. Am. Bull. 133, 2535–2548 (2021).

    Article  Google Scholar 

  27. Melnick, D. & Echtler, H. P. Inversion of forearc basins in south-central Chile caused by rapid glacial age trench fill. Geology 34, 709–712 (2006).

    Article  Google Scholar 

  28. Adriasola, A. C., Thomson, S. N., Brix, M. R., Hervé, F. & Stöckhert, B. Postmagmatic cooling and late Cenozoic denudation of the North Patagonian Batholith in the Los Lagos region of Chile, 41°–42° 15′ S. Int. J. Earth Sci. 95, 504–528 (2006).

    Article  Google Scholar 

  29. Tembe, S., Lockner, D. A. & Wong, T.-F. Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: Binary and ternary mixtures of quartz, illite, and montmorillonite. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2009jb006383 (2010).

  30. den Hartog, S. A. M., Niemeijer, A. R. & Spiers, C. J. New constraints on megathrust slip stability under subduction zone P–T conditions. Earth Planet. Sci. Lett. https://doi.org/10.1016/j.epsl.2012.08.022353, 240-252 (2012).

  31. Behrmann, J. H. & Kopf, A. Balance of tectonically accreted and subducted sediment at the Chile triple junction. Int. J. Earth Sci. 90, 753–768 (2001).

    Article  Google Scholar 

  32. Liu, Y. & Rice, J. R. Slow slip predictions based on granite and gabbro friction data compared to GPS measurements in northern Cascadia. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2008jb006142 (2009).

  33. Melnick, D. et al. Back to full interseismic plate locking decades after the giant 1960 Chile earthquake. Nat. Commun. 9, 3527 (2018).

    Article  Google Scholar 

  34. Angiboust, S., Wolf, S., Burov, E., Agard, P. & Yamato, P. Effect of fluid circulation on subduction interface tectonic processes: insights from thermo-mechanical numerical modelling. Earth Planet. Sci. Lett. 357–358, 238–248 (2012).

  35. Okazaki, K. & Katayama, I. Slow stick slip of antigorite serpentinite under hydrothermal conditions as a possible mechanism for slow earthquakes. Geophys. Res. Lett. 42, 1099–1104 (2015).

    Article  Google Scholar 

  36. Takahashi, M. et al. On the transient response of serpentine (antigorite) gouge to stepwise changes in slip velocity under high‐temperature conditions. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2010jb008062 (2011).

  37. Moore, D. E. & Lockner, D. A. Frictional strengths of talc‐serpentine and talc‐quartz mixtures. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2010jb007881 (2011).

  38. Schwartz, S. et al. Pressure–temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos https://doi.org/10.1016/j.lithos.2012.11.023 (2013).

  39. Saffer, D. M. & Wallace, L. M. The frictional, hydrologic, metamorphic and thermal habitat of shallow slow earthquakes. Nat. Geosci. 8, 594–600 (2015).

    Article  Google Scholar 

  40. Moreno, M. et al. Chilean megathrust earthquake recurrence linked to frictional contrast at depth. Nat. Geosci. 11, 285–290 (2018).

    Article  Google Scholar 

  41. Araya, R., Cárcamo, C. & Poza, A. H. A stabilized finite element method for the Stokes–Temperature coupled problem. Appl. Numer. Math. 187, 24–49 (2023).

  42. Spinelli, G. A., Wada, I., He, J. & Perry, M. The thermal effect of fluid circulation in the subducting crust on slab melting in the Chile subduction zone. Earth Planet. Sci. Lett. 434, 101–111 (2016).

    Article  Google Scholar 

  43. Völker, D., Grevemeyer, I., Stipp, M., Wang, K. & He, J. Thermal control of the seismogenic zone of southern central Chile. J. Geophys. Res. Solid Earth 116, B10305 (2011).

  44. Karato, S.-I. & Jung, H. Effects of pressure on high-temperature dislocation creep in olivine. Philos. Mag. https://doi.org/10.1080/0141861021000025829 (2010).

  45. Masuti, S., Barbot, S. D., Karato, S.-I., Feng, L. & Banerjee, P. Upper-mantle water stratification inferred from observations of the 2012 Indian Ocean earthquake. Nature 538, 373–377 (2016).

    Article  Google Scholar 

  46. Wada, I., Rychert, C. A. & Wang, K. Sharp thermal transition in the forearc mantle wedge as a consequence of nonlinear mantle wedge flow. Geophys. Res. Lett. 38, L13308 (2011).

    Article  Google Scholar 

  47. Erickson, B. A. et al. The community code verification exercise for Simulating Sequences of Earthquakes and Aseismic Slip (SEAS). Seismol. Res. Lett. 91, 874–890 (2020).

    Article  Google Scholar 

  48. Weiss, J. R. et al. Illuminating subduction zone rheological properties in the wake of a giant earthquake. Sci. Adv. 5, eaax6720 (2019).

    Article  Google Scholar 

  49. Luo, H. & Wang, K. Postseismic geodetic signature of cold forearc mantle in subduction zones. Nat. Geosci. 14, 104–109 (2021).

    Article  Google Scholar 

  50. Garrett, E., Brader, M., Melnick, D., Bedford, J. & Aedo, D. First field evidence of coseismic land-level change associated with the 25 December 2016 Mw 7.6 Chiloé, Chile, earthquake. Bull. Seismol. Soc. Am. 109, 87–98 (2019).

    Article  Google Scholar 

  51. Wils, K. et al. Seismo-turbidites in Aysén Fjord (southern Chile) reveal a complex pattern of rupture modes along the 1960 megathrust earthquake segment. J. Geophys. Res. Solid Earth 125, e2020JB019405 (2020).

  52. Moernaut, J. et al. Larger earthquakes recur more periodically: new insights in the megathrust earthquake cycle from lacustrine turbidite records in South-Central Chile. Earth Planet. Sci. Lett. 481, 9–19 (2018).

    Article  Google Scholar 

  53. Cifuentes, I. L. The 1960 Chilean earthquakes. J. Geophys. Res. Solid Earth 94, 665–680 (1989).

    Article  Google Scholar 

  54. Krawczyk, C. Amphibious seismic survey images plate interface at 1960 Chile Earthquake. Eos Trans. Am. Geophys. Union 84, 301–305 (2003).

    Article  Google Scholar 

  55. Ho, T.-C., Satake, K., Watada, S. & Fujii, Y. Source estimate for the 1960 Chile earthquake from joint inversion of geodetic and transoceanic tsunami data. J. Geophys. Res. Solid Earth 124, 2812–2828 (2019).

    Article  Google Scholar 

  56. Hocking, E. P., Garrett, E., Aedo, D., Carvajal, M. & Melnick, D. Geological evidence of an unreported historical Chilean tsunami reveals more frequent inundation. Commun. Earth Environ. 2, 245 (2021).

    Article  Google Scholar 

  57. Kempf, P., Moernaut, J. & De Batist, M. Bimodal recurrence pattern of tsunamis in south-central Chile: a statistical exploration of paleotsunami data. Seismol. Res. Lett. 90, 194–202 (2019).

    Article  Google Scholar 

  58. Luo, H. & Wang, K. Finding simplicity in the complexity of postseismic coastal uplift and subsidence following great subduction earthquakes. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2022jb024471 (2022).

  59. Becerra-Carreño, V., Crempien, J. G. F., Benavente, R. & Moreno, M. Plate-locking, uncertainty estimation and spatial correlations revealed with a Bayesian model selection method: application to the central Chile subduction zone. J. Geophys. Res. Solid Earth 127, e2021JB023939 (2022).

    Article  Google Scholar 

  60. Moreno, M. S., Bolte, J., Klotz, J. & Melnick, D. Impact of megathrust geometry on inversion of coseismic slip from geodetic data: application to the 1960 Chile earthquake. Geophys. Res. Lett. 36, 16310 (2009).

    Article  Google Scholar 

  61. Yu, H., Liu, Y., Yang, H. & Ning, J. Modeling earthquake sequences along the Manila subduction zone: effects of three-dimensional fault geometry. Tectonophysics 733, 73–84 (2018).

    Article  Google Scholar 

  62. Condit, C. B., Guevara, V. E., Delph, J. R. & French, M. E. Slab dehydration in warm subduction zones at depths of episodic slip and tremor. Earth Planet. Sci. Lett. https://doi.org/10.1016/j.epsl.2020.116601 (2020).

  63. Hernández-Uribe, D., Palin, R. M., Cone, K. A. & Cao, W. Petrological implications of seafloor hydrothermal alteration of subducted mid-ocean ridge basalt. J. Petrol. 61, egaa086 (2021).

    Article  Google Scholar 

  64. Maldonado, V., Contreras, M. & Melnick, D. A comprehensive database of active and potentially-active continental faults in Chile at 1:25,000 scale. Sci. Data 8, 20 (2021).

    Article  Google Scholar 

  65. Melnick, D., Bookhagen, B., Strecker, M. R. & Echtler, H. P. Segmentation of megathrust rupture zones from fore-arc deformation patterns over hundreds to millions of years, Arauco peninsula, Chile. J. Geophys. Res. Solid Earth 114, 1407 (2009).

    Article  Google Scholar 

  66. GEBCO Compilation Group GEBCO 2023 Grid (National Oceanic Centre & British Oceanographic Data Centre, 2023); https://doi.org/10.5285/836f016a-33be-6ddc-e053-6c86abc0788e

  67. NASA EOSDIS Land Processes Distributed Active Archive Center NASA Shuttle Radar Topography Mission Global 1 Arc Second. NASA JPL https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003 (2013).

  68. Lapusta, N. & Rice, J. R. Nucleation and early seismic propagation of small and large events in a crustal earthquake model. J. Geophys. Res. Solid Earth 108, 2205 (2003).

    Article  Google Scholar 

  69. Barbot, S. Modulation of fault strength during the seismic cycle by grain-size evolution around contact junctions. Tectonophysics 765, 129–145 (2019).

    Article  Google Scholar 

  70. Dieterich, J. H. & Kilgore, B. Implications of fault constitutive properties for earthquake prediction. Proc. Natl Acad. Sci. USA 93, 3787–3794 (1996).

    Article  Google Scholar 

  71. Dieterich, J. H. Modeling of rock friction 1. experimental results and constitutive equations. J. Geophys. Res. Solid Earth 84, 2161–2168 (1979).

    Article  Google Scholar 

  72. Marone, C. Laboratory-derived friction laws and their application to seismic faulting. Annu Rev. Earth Planet Sci. 26, 643–696 (1998).

    Article  Google Scholar 

  73. Bürgmann, R. The geophysics, geology and mechanics of slow fault slip. Earth Planet. Sci. Lett. 495, 112–134 (2018).

    Article  Google Scholar 

  74. Kozdon, J. E. & Dunham, E. M. Rupture to the trench: dynamic rupture simulations of the 11 March 2011 Tohoku earthquake. Bull. Seismol. Soc. Am. 103, 1275–1289 (2013).

    Article  Google Scholar 

  75. Rubin, A. M. & Ampuero, J. P. Earthquake nucleation on (aging) rate and state faults. J. Geophys. Res. Solid Earth 110, 1–24 (2005).

    Article  Google Scholar 

  76. Hirth, G. & Kohlstedt, D. Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. Geophys. Monogr. Ser. 138, 83–105 (2004).

    Google Scholar 

  77. Barbot, S., Moore, J. D. P. & Lambert, V. Displacement and stress associated with distributed anelastic deformation in a half-space. Bull. Seismol. Soc. Am. 107, 821–855 (2017).

    Article  Google Scholar 

  78. Muto, J. et al. Coupled afterslip and transient mantle flow after the 2011 Tohoku earthquake. Sci. Adv. 5, eaaw1164 (2019).

    Article  Google Scholar 

  79. Marotta, G. S. A., França, G. S., Galera Monico, J. F., Fuck, R. A. & Oswaldo de Araújo Filho, J. Strain rate of the South American lithospheric plate by SIRGAS-CON geodetic observations. J. South Am. Earth Sci. 47, 136–141 (2013).

    Article  Google Scholar 

  80. van Keken, P. E. et al. A community benchmark for subduction zone modeling. Phys. Earth Planet. Inter. 171, 187–197 (2008).

    Article  Google Scholar 

  81. Peacock, S. M. & Wang, K. On the stability of talc in subduction zones: a possible control on the maximum depth of decoupling between the subducting plate and mantle wedge. Geophys. Res. Lett. 48, e2021GL094889 (2021).

  82. Turcotte, D. & Schubert, G. Geodynamics (Cambridge Univ. Press, 2014); https://doi.org/10.1017/CBO9780511843877

  83. Tebbens, S. F. & Cande, S. C. Southeast pacific tectonic evolution from early oligocene to present. J. Geophys. Res. Solid Earth 102, 12061–12084 (1997).

    Article  Google Scholar 

  84. Tassara, A. Control of forearc density structure on megathrust shear strength along the Chilean subduction zone. Tectonophysics 495, 34–47 (2010).

    Article  Google Scholar 

  85. Barbot, S. Asthenosphere flow modulated by megathrust earthquake cycles. Geophys. Res. Lett. 45, 6018–6031 (2018).

    Article  Google Scholar 

  86. Phillips, N. J., Belzer, B., French, M. E., Rowe, C. D. & Ujiie, K. Frictional strengths of subduction thrust rocks in the region of shallow slow earthquakes. J. Geophys. Res. Solid Earth 125, e2019JB018888 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Agency of Research and Development (ANID-Human Resources Branch/National Doctorate/2021) (J.J.), the Millennium Scientific Initiative (ICM) grant NC160025 ‘CYCLO—the seismic cycle along subduction zones’ (A.T., J.J.). R.A. acknowledges funding from the Centro de Modelamiento Matemático (FB210005) of the PIA Program: Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal (ANID-Chile). S.B. acknowledges funding from the National Science Foundation under award number EAR-1848192. J.G.F.C. has been supported by Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN), Agencia Nacional de Investigación y Desarrollo (ANID)/Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias (FONDAP)/1522ª0005 and acknowledges support from ANID/Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT)/11201180. M.M. acknowledges support from ICN12019N Instituto Milenio de Oceanografía and FONDECYT 1221507 and CIGIDEN (FONDAP)/1522ª0005.

Author information

Authors and Affiliations

Authors

Contributions

J.J., S.B., M.M. and A.T. conceived the original idea, which was elaborated with J.G.F.C. and R.A. Quasi-dynamic numerical simulations were performed by J.J. using the numerical code of S.B. N.C. and R.A. made the thermal model, V.B-C. and J.G.F.C. computed the coseismic slip model. J.J. compiled the geophysical and structural data to then build the representative cross section. J.J. estimated the pressure–temperature path along plate interface. The paper was written by J.J. and S.B. with comments of M.M., A.T., J.G.F.C. and R.A.

Corresponding author

Correspondence to Joaquín Julve.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Mohamed Chlieh, Muriel Gerbault and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Stefan Lachowycz and Alison Hunt, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Temperature distribution, mesh, and pressure-temperature path.

a) black arrow denotes the convective asthenosphere flux. Purple curves are contours of the Vp/Vs value21. Triangles are the mesh used for the continental and oceanic mantle. b) Gray dashed lines are the limits of metamorphic facies for a metapelite rock62. LB = Lawsonite Blueschist, epB = Epidote Blueschist, Amph = Amphibolite, G = Greenschist, PP = Prehnite-Pumpellyite, E = Eclogite. Intraplate and Interplate refer to the location of the interseismic seismicity.

Extended Data Fig. 2 GNSS and intertidal biotic indicator data.

a) Velocity vectors from ref. 40 for the coseismic slip of the Melinka Mw7.6 2016 earthquake. b) Uplift data from ref. 8 measured after 8 years of the Valdivia Mw9.5 1960 earthquake. Basemap from GEBCO.

Extended Data Fig. 3 Root mean squared error values for systematic variation on λ.

In the left column are plotted RMSE values with respect to the surface deformation obtained from GNSS data of Melinka and Valdivia earthquakes. In the right column are plotted RMSE values with respect to the median value of great and large earthquakes obtained from the paleoseismic record. Red squares are the models in which the λ value is changed in the Upper Seismogenic Zone. Blue dots are the models in which the λ value is changed in the Lower Seismogenic Zone. Creeping zone in c) refers to the Metamorphic Belt and Serpentinized Mantle Wedge segments. Light blue diamonds are the models in which the λ value is changed in the Creeping Zone domain.

Extended Data Fig. 4 Effects of petrology and depth of the end of the seismogenic zone.

In a) the gray curve is the median coseismic slip for great ruptures from the preferred model. The blue curve is the median coseismic slip for great ruptures from a model in which the Upper and Lower Seismogenic Zone are controlled by the frictional behavior of altered basalt (a – b and μ0 are obtained from ref. 86 while the rest of frictional parameters are the same as the preferred model in Table 1). The red curve is the median coseismic slip for great ruptures from the initial model. In b) gray and green curves show the median coseismic slip for great ruptures in which the end of the seismogenic zone is increased. Isotherm in b) is obtained from our computed thermal distribution. Gray and green dashed curves mark the depth in which ends the seismogenic zone for each model. Error bars in data of Plafker and Savage are reported as mean errors as function of the methodology in which uplift was measured. In c) the red curve is the interpolation at 43° S of the 3D coseismic slip model from ref. 40. Gray and green curves are the mean coseismic slip distribution for large ruptures, with the same changes in the end of the seismogenic zone as b).

Extended Data Fig. 5 Time series of the east and vertical components of the synthetic gps from our model.

We select the same time interval from Fig. 3. Red triangles mark the position of the volcanic arc.

Extended Data Table 1 Power-creep law properties
Extended Data Table 2 Pore pressure ratio and effective normal stress variation
Extended Data Table 3 Thermal properties of the temperature model

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Julve, J., Barbot, S., Moreno, M. et al. Recurrence time and size of Chilean earthquakes influenced by geological structure. Nat. Geosci. 17, 79–87 (2024). https://doi.org/10.1038/s41561-023-01327-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-023-01327-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing