Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Climate variability a key driver of recent Antarctic ice-mass change

Abstract

Multiple datasets show the Antarctic Ice Sheet has lost mass over recent decades and therefore contributed to sea-level rise. Short-term variability in ice mass has been associated partly with El Niño/Southern Oscillation (ENSO), for both the grounded ice sheet and its bounding ice shelves, but a connection with the Southern Annular Mode—the dominant climate mode in the region—is not fully clear. Here we show that satellite-based gravimetric estimates of ice-mass variability between 2002 and 2021 can be largely explained by a simple linear relation with both the Southern Annular Mode and lagged ENSO. Multiple linear regression reveals that the cumulative effects of the Southern Annular Mode and/or ENSO explain much of the decadal variability from the whole ice sheet down to individual drainage basins. A substantial portion of the net change in ice mass across the whole ice sheet between 2002 and 2021 can be attributed to a persistent forcing from a positive Southern Annular Mode. Understanding the drivers of variability in the Southern Annular Mode over this period, which are largely anthropogenic over multidecadal timescales, may be a pathway to partially attributing ice-sheet change to human activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Leading modes of Antarctic mass change.
Fig. 2: Results of multivariate regression.
Fig. 3: Nonlinear ice-sheet mass change.
Fig. 4: Ice-sheet GRACE linear trends.

Similar content being viewed by others

Data availability

All data are publicly available from the locations linked in the Methods section. The datasets generated and/or analysed during the current study are available at https://doi.org/10.25959/8MW6-ZN03.

Code availability

Code used to analyse the data and prepare figures will be made available upon request.

References

  1. IMBIE team. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558, 219–222 (2018).

    Article  Google Scholar 

  2. Velicogna, I. & Wahr, J. Measurements of time-variable gravity show mass loss in Antarctica. Science 311, 1754–1756 (2006).

    Article  Google Scholar 

  3. Shepherd, A. & Wingham, D. Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science 315, 1529–1532 (2007).

    Article  Google Scholar 

  4. Rignot, E. et al. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl Acad. Sci. USA 116, 1095–1103 (2019).

    Article  Google Scholar 

  5. Wang, L., Davis, J. L. & Howat, I. M. Complex patterns of Antarctic Ice Sheet mass change resolved by time-dependent rate modeling of GRACE and GRACE Follow-On observations. Geophys. Res. Lett. 48, e2020GL090961 (2021).

    Article  Google Scholar 

  6. Willen, M. O. et al. Separating long-term and short-term mass changes of Antarctic ice drainage basins: a coupled state space analysis of satellite observations and model products. J. Geophys. Res. Earth Surf. 126, e2020JF005966 (2021).

    Article  Google Scholar 

  7. Horwath, M., Legresy, B., Remy, F., Blarel, F. & Lemoine, J. M. Consistent patterns of Antarctic Ice Sheet interannual variations from ENVISAT radar altimetry and GRACE satellite gravimetry. Geophys. J. Int. 189, 863–876 (2012).

    Article  Google Scholar 

  8. Jiao, J. et al. Spatially heterogeneous nonlinear signal in Antarctic Ice-Sheet mass loss revealed by GRACE and GPS. Geophys. J. Int. 233, 826–838 (2022).

    Article  Google Scholar 

  9. Yuan, X., Kaplan, M. R. & Cane, M. A. The interconnected global climate system—a review of tropical–polar teleconnections. J. Clim. 31, 5765–5792 (2018).

    Article  Google Scholar 

  10. Sasgen, I., Dobslaw, H., Martinec, Z. & Thomas, M. Satellite gravimetry observation of Antarctic snow accumulation related to ENSO. Earth Planet. Sci. Lett. 299, 352–358 (2010).

    Article  Google Scholar 

  11. Zhang, B., Yao, Y., Liu, L. & Yang, Y. Interannual ice mass variations over the Antarctic ice sheet from 2003 to 2017 were linked to El Niño–Southern Oscillation. Earth Planet. Sci. Lett. 560, 116796 (2021).

    Article  Google Scholar 

  12. Zhan, J., Shi, H., Wang, Y. & Yao, Y. Complex principal component analysis of Antarctic Ice Sheet mass balance. Remote Sens. 13, 480 (2021).

    Article  Google Scholar 

  13. Bodart, J. A. & Bingham, R. J. The impact of the extreme 2015–2016 El Niño on the mass balance of the Antarctic Ice Sheet. Geophys. Res. Lett. 46, 13862–13871 (2019).

    Article  Google Scholar 

  14. Li, Z., Chao, B. F., Wang, H. S. & Zhang, Z. Z. Antarctica ice-mass variations on interannual timescale: coastal dipole and propagating transports. Earth Planet. Sci. Lett. 595, 117789 (2022).

    Article  Google Scholar 

  15. Pfeffer, J., Cazenave, A. & Barnoud, A. Analysis of the interannual variability in satellite gravity solutions: detection of climate modes fingerprints in water mass displacements across continents and oceans. Clim. Dyn. 58, 1065–1084 (2022).

    Article  Google Scholar 

  16. Thomas, E. R. et al. Regional Antarctic snow accumulation over the past 1000 years. Clim. Past 13, 1491–1513 (2017).

    Article  Google Scholar 

  17. Kim, B.-H., Seo, K.-W., Eom, J., Chen, J. & Wilson, C. R. Antarctic ice mass variations from 1979 to 2017 driven by anomalous precipitation accumulation. Sci. Rep. 10, 20366 (2020).

    Article  Google Scholar 

  18. Hansen, N. et al. Downscaled surface mass balance in Antarctica: impacts of subsurface processes and large-scale atmospheric circulation. Cryosphere 15, 4315–4333 (2021).

    Article  Google Scholar 

  19. Abram, N. J. et al. Evolution of the Southern Annular Mode during the past millennium. Nat. Clim. Change 4, 564–569 (2014).

    Article  Google Scholar 

  20. Marshall, G. J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 16, 4134–4143 (2003).

    Article  Google Scholar 

  21. Medley, B. & Thomas, E. R. Increased snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-level rise. Nat. Clim. Change 9, 34–39 (2019).

    Article  Google Scholar 

  22. Palóczy, A., Gille, S. T. & McClean, J. L. Oceanic heat delivery to the Antarctic continental shelf: large-scale, low-frequency variability. J. Geophys. Res. Oceans 123, 7678–7701 (2018).

    Article  Google Scholar 

  23. Spence, P. et al. Localized rapid warming of West Antarctic subsurface waters by remote winds. Nat. Clim. Change 7, 595–603 (2017).

    Article  Google Scholar 

  24. Verfaillie, D. et al. The circum-Antarctic ice-shelves respond to a more positive Southern Annular Mode with regionally varied melting. Commun. Earth Environ. 3, 139 (2022).

    Article  Google Scholar 

  25. Kaitheri, A., Mémin, A. & Rémy, F. Inter-annual variability in the Antarctic Ice Sheets using geodetic observations and a climate model. Remote Sens. 13, 2199 (2021).

    Article  Google Scholar 

  26. Mémin, A., Flament, T., Alizier, B., Watson, C. & Rémy, F. Interannual variation of the Antarctic Ice Sheet from a combined analysis of satellite gravimetry and altimetry data. Earth Planet. Sci. Lett. 422, 150–156 (2015).

    Article  Google Scholar 

  27. Shepherd, A. et al. Trends in Antarctic Ice Sheet elevation and mass. Geophys. Res. Lett. 46, 8174–8183 (2019).

    Article  Google Scholar 

  28. Smith, B. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368, 1239–1242 (2020).

    Article  Google Scholar 

  29. Velicogna, I. et al. Continuity of ice sheet mass loss in Greenland and Antarctica from the GRACE and GRACE Follow-On missions. Geophys. Res. Lett. 47, e2020GL087291 (2020).

    Article  Google Scholar 

  30. Paolo, F. S. et al. Response of Pacific-sector Antarctic ice shelves to the El Niño/Southern Oscillation. Nat. Geosci. 11, 121–126 (2018).

    Article  Google Scholar 

  31. Diener, T. et al. Acceleration of dynamic ice loss in Antarctica from satellite gravimetry. Front. Earth Sci. https://doi.org/10.3389/feart.2021.741789 (2021).

  32. Turner, J. The El Niño–Southern Oscillation and Antarctica. Int. J. Climatol. 24, 1–31 (2004).

    Article  Google Scholar 

  33. van Wessem, J. M. et al. Modelling the climate and surface mass balance of polar ice sheets using RACMO2—part 2: Antarctica (1979–2016). Cryosphere 12, 1479–1498 (2018).

    Article  Google Scholar 

  34. Udy, D. G., Vance, T. R., Kiem, A. S., Holbrook, N. J. & Curran, M. A. J. Links between large-scale modes of climate variability and synoptic weather patterns in the Southern Indian Ocean. J. Clim. 34, 883–899 (2021).

    Article  Google Scholar 

  35. Fogt, R. L. & Marshall, G. J. The Southern Annular Mode: variability, trends, and climate impacts across the Southern Hemisphere. Wiley Interdiscip. Rev. Clim. Change 11, e652 (2020).

    Article  Google Scholar 

  36. Deb, P. et al. Summer drivers of atmospheric variability affecting ice shelf thinning in the Amundsen Sea Embayment, West Antarctica. Geophys. Res. Lett. 45, 4124–4133 (2018).

    Article  Google Scholar 

  37. King, M. A. et al. Lower satellite-gravimetry estimates of Antarctic sea-level contribution. Nature 491, 586–589 (2012).

    Article  Google Scholar 

  38. Mottram, R. et al. What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates. Cryosphere 15, 3751–3784 (2021).

    Article  Google Scholar 

  39. Maclennan, M. L., Lenaerts, J. T. M., Shields, C. & Wille, J. D. Contribution of atmospheric rivers to Antarctic precipitation. Geophys. Res. Lett. 49, e2022GL100585 (2022).

    Article  Google Scholar 

  40. Wille, J. D. et al. Antarctic atmospheric river climatology and precipitation impacts. J. Geophys. Res. Atmos. 126, e2020JD033788 (2021).

    Article  Google Scholar 

  41. Walker, C. C. & Gardner, A. S. Rapid drawdown of Antarctica’s Wordie Ice Shelf glaciers in response to ENSO/Southern Annular Mode-driven warming in the Southern Ocean. Earth Planet. Sci. Lett. 476, 100–110 (2017).

    Article  Google Scholar 

  42. Christie, F. D. W., Steig, E. J., Gourmelen, N., Tett, S. F. B. & Bingham, R. G. Inter-decadal climate variability induces differential ice response along Pacific-facing West Antarctica. Nat. Commun. 14, 93 (2023).

    Article  Google Scholar 

  43. Miles, B. W. J. et al. High spatial and temporal variability in Antarctic ice discharge linked to ice shelf buttressing and bed geometry. Sci. Rep. 12, 10968 (2022).

    Article  Google Scholar 

  44. Holland, P. R., Bracegirdle, T. J., Dutrieux, P., Jenkins, A. & Steig, E. J. West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nat. Geosci. 12, 718–724 (2019).

    Article  Google Scholar 

  45. Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1211–1362 (Cambridge Univ. Press, 2021).

  46. Previdi, M. & Polvani, L. M. Anthropogenic impact on Antarctic surface mass balance, currently masked by natural variability, to emerge by mid-century. Environ. Res. Lett. 11, 094001 (2016).

    Article  Google Scholar 

  47. Cai, W. et al. Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ. 2, 628–644 (2021).

    Article  Google Scholar 

  48. Wengel, C. et al. Future high-resolution El Niño/Southern Oscillation dynamics. Nat. Clim. Change 11, 758–765 (2021).

    Article  Google Scholar 

  49. Arblaster, J. M. & Meehl, G. A. Contributions of external forcings to Southern Annular Mode trends. J. Clim. 19, 2896–2905 (2006).

    Article  Google Scholar 

  50. Zheng, F., Li, J., Clark, R. T. & Nnamchi, H. C. Simulation and projection of the Southern Hemisphere Annular Mode in CMIP5 models. J. Clim. 26, 9860–9879 (2013).

    Article  Google Scholar 

  51. Sasgen, I., Groh, A. & Horwath, M. COST-G GravIS RL01 Ice-Mass Change Products (GFZ Data Services, 2020); https://doi.org/10.5880/COST-G.GRAVIS_01_L3_ICE

  52. Dahle, C. & Murböck, M. Post-Processed GRACE/GRACE-FO Geopotential GSM Coefficients COST-G RL01 (Level-2B Product) (GFZ Data Services, 2020); https://doi.org/10.5880/GFZ.GRAVIS_06_L2B

  53. Sun, Y., Riva, R. & Ditmar, P. Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models. J. Geophys. Res. Solid Earth 121, 8352–8370 (2016).

    Article  Google Scholar 

  54. Swenson, S., Chambers, D. & Wahr, J. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2007jb005338 (2008).

  55. Peltier, R. W., Argus, D. F. & Drummond, R. Comment on “An assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model” by Purcell et al. J. Geophys. Res. Solid Earth 123, 2019–2028 (2018).

    Article  Google Scholar 

  56. Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid Earth 120, 450–487 (2015).

    Article  Google Scholar 

  57. Argus, D. F., Peltier, W. R., Drummond, R. & Moore, A. W. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophys. J. Int. 198, 537–563 (2014).

    Article  Google Scholar 

  58. Caron, L. et al. GIA model statistics for GRACE hydrology, cryosphere, and ocean science. Geophys. Res. Lett. 45, 2203–2212 (2018).

    Article  Google Scholar 

  59. Regional Atmospheric Climate Model (RACMO2), RACMO2.3p2_ANT27 (2022).

  60. An observation-based Southern Hemisphere Annular Mode Index, SAM station-based index (2022).

  61. NOAA PSL Download Climate Timeseries, Nino3.4 index (2022).

  62. Southern Oscillation Index (SOI), SOI index (2022).

  63. Gardner, A. S. et al. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere 12, 521–547 (2018).

    Article  Google Scholar 

  64. Joughin, I., Shapero, D., Smith, B., Dutrieux, P. & Barham, M. Ice-shelf retreat drives recent Pine Island Glacier speedup. Sci. Adv. 7, eabg3080 (2021).

    Article  Google Scholar 

  65. Milillo, P. et al. Heterogeneous retreat and ice melt of Thwaites Glacier, West Antarctica. Sci. Adv. 5, eaau3433 (2019).

    Article  Google Scholar 

  66. King, M. A. & Watson, C. S. Antarctic surface mass balance: natural variability, noise, and detecting new trends. Geophys. Res. Lett. 47, e2020GL087493 (2020).

    Article  Google Scholar 

  67. Wouters, B., Bamber, J. L., van den Broeke, M. R., Lenaerts, J. T. M. & Sasgen, I. Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nat. Geosci. 6, 613–616 (2013).

    Article  Google Scholar 

  68. Williams, S. D. P., Moore, P., King, M. A. & Whitehouse, P. L. Revisiting GRACE Antarctic ice mass trends and accelerations considering autocorrelation. Earth Planet. Sci. Lett. 385, 12–21 (2014).

    Article  Google Scholar 

  69. Scambos, T. A., Haran, T. M., Fahnestock, M. A., Painter, T. H. & Bohlander, J. MODIS-based Mosaic of Antarctica (MOA) data sets: continent-wide surface morphology and snow grain size. Remote Sens. Environ. 111, 242–257 (2007).

    Article  Google Scholar 

  70. Mosaic of Antarctica coastlines v1, MOAv1 (2022).

Download references

Acknowledgements

This study was supported by the Centre for Southern Hemisphere Oceans Research (CSHOR), jointly funded by the Qingdao National Laboratory for Marine Science and Technology (QNLM, China) and the Commonwealth Scientific and Industrial Research Organisation (CSIRO, Australia), and by the Australian Research Council Special Research Initiative, Australian Centre for Excellence in Antarctic Science (project number SR200100008). We thank C. Watson and R. Coleman for helpful discussions on the analysis and interpretation and L. Padman for constructive reviews. We thank the GravIS team for supplying GRACE data. Grant funding: SR200100008 (M.A.K.).

Author information

Authors and Affiliations

Authors

Contributions

M.A.K. conceived the study, led the analysis and drafted the manuscript. K.L. performed the initial EOF and regression analysis and developed the use of the integrated climate indices. X.Z. assisted with the interpretation. All authors commented on the paper.

Corresponding author

Correspondence to Matt A. King.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Laurence Padman, Kyle Clem and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Tom Richardson, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, Tables 1–3 and Text 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

King, M.A., Lyu, K. & Zhang, X. Climate variability a key driver of recent Antarctic ice-mass change. Nat. Geosci. 16, 1128–1135 (2023). https://doi.org/10.1038/s41561-023-01317-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-023-01317-w

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene