Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Atmospheric new particle formation from the CERN CLOUD experiment

Abstract

Aerosol particles in the atmosphere profoundly influence public health and climate. Ultrafine particles enter the body through the lungs and can translocate to essentially all organs, and they represent a major yet poorly understood health risk. Human activities have considerably increased aerosols and cloudiness since preindustrial times, but they remain persistently uncertain and underrepresented in global climate models. Here we present a synthesis of the current understanding of atmospheric new particle formation derived from laboratory measurements at the CERN CLOUD chamber. Whereas the importance of sulfuric acid has long been recognized, condensable vapours such as highly oxygenated organics and iodine oxoacids also play key roles, together with stabilizers such as ammonia, amines and ions from galactic cosmic rays. We discuss how insights from CLOUD experiments are helping to interpret new particle formation in different atmospheric environments, and to provide a mechanistic foundation for air quality and climate models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms for NPF in the atmosphere.
Fig. 2: Particle formation rates versus vapour concentrations for different chemical systems.
Fig. 3: Geographical locations of nucleation mechanisms measured in the laboratory by CLOUD.
Fig. 4: Two-dimensional volatility basis set for oxidation of biogenic and anthropogenic organic vapours100.

Similar content being viewed by others

Data availability

The CLOUD data are available from the published articles in the list of references and by request to their corresponding authors. Extended Data Table 2 provides the digital object identifier (doi) for selected CLOUD publications on nucleation and growth rates. The data for several CLOUD publications are already available on the Zenodo public repository (https://zenodo.org), hosted at CERN’s Data Centre, and the data for the remaining publications will shortly be made available on Zenodo.

References

  1. Gordon, H. et al. Causes and importance of new particle formation in the present-day and preindustrial atmospheres. J. Geophys. Res. Atmos. 122, 8739–8760 (2017).

    Article  Google Scholar 

  2. Kirkby, J. et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476, 429–433 (2011).

    Article  Google Scholar 

  3. Kürten, A., Williamson, C., Almeida, J., Kirkby, J. & Curtius, J. On the derivation of particle nucleation rates from experimental formation rates. Atmos. Chem. Phys. 15, 4063–4075 (2015).

  4. Lee, S. et al. New particle formation in the atmosphere: from molecular clusters to global climate. J. Geophys. Res. Atmos. 124, 7098–7146 (2019).

    Article  Google Scholar 

  5. Kerminen, V.-M. et al. Atmospheric new particle formation and growth: review of field observations. Environ. Res. Lett. 13, 103003 (2018).

    Article  Google Scholar 

  6. Sellegri, K. et al. New particle formation: a review of ground-based observations at mountain research stations. Atmosphere 10, 493 (2019).

    Article  Google Scholar 

  7. Zhang, R. et al. Formation of urban fine particulate matter. Chem. Rev. 115, 3803–3855 (2015).

    Article  Google Scholar 

  8. O’Dowd, C. D. et al. Marine aerosol formation from biogenic iodine emissions. Nature 417, 632–636 (2002).

    Article  Google Scholar 

  9. Yu, F. & Turco, R. P. From molecular clusters to nanoparticles: role of ambient ionization in tropospheric aerosol formation. J. Geophys. Res. 106, 4797–4814 (2001).

    Article  Google Scholar 

  10. Schobesberger, S. et al. On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation. Atmos. Chem. Phys. 15, 55–78 (2015).

    Article  Google Scholar 

  11. Olenius, T., Kupiainen-Määttä, O., Ortega, I. K., Kurtén, T. & Vehkamäki, H. Free energy barrier in the growth of sulfuric acid–ammonia and sulfuric acid–dimethylamine clusters. J. Chem. Phys. 139, 084312 (2013).

    Article  Google Scholar 

  12. Kürten, A. et al. Thermodynamics of the formation of sulfuric acid dimers in the binary (H2SO4−H2O) and ternary (H2SO4−H2O−NH3) system. Atmos. Chem. Phys. 15, 10701–10721 (2015).

    Article  Google Scholar 

  13. Kürten, A. et al. Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates and temperatures. J. Geophys. Res. Atmos. 121, 12377–12400 (2016).

    Article  Google Scholar 

  14. Bianchi, F. et al. New particle formation in the free troposphere: a question of chemistry and timing. Science 352, 1109–1112 (2016).

    Article  Google Scholar 

  15. Bianchi, F. et al. The SALTENA experiment: comprehensive observations of aerosol sources, formation, and processes in the South American Andes. Bull. Am. Met. Soc. 103, E212–E229 (2022).

  16. Yan, C. et al. The role of H2SO4−NH3 anion clusters in ion-induced aerosol nucleation mechanisms in the boreal forest. Atmos. Chem. Phys. 18, 13231–13243 (2018).

    Article  Google Scholar 

  17. Jokinen, T. et al. Ion-induced sulfuric acid–ammonia nucleation drives particle formation in coastal Antarctica. Sci. Adv. 4, aat9744 (2018).

  18. Lee, H. et al. Atmospheric new particle formation characteristics in the Arctic as measured at Mount Zeppelin, Svalbard, from 2016 to 2018. Atmos. Chem. Phys. 20, 13425–13441 (2020).

    Article  Google Scholar 

  19. Sarnela, N. et al. Measurement-model comparison of stabilized Criegee intermediate and highly oxygenated molecule production in the CLOUD chamber. Atmos. Chem. Phys. 18, 2363–2380 (2018).

    Article  Google Scholar 

  20. Shen, J. et al. High methanesulfonic acid production in the OH-initiated oxidation of dimethyl sulfide at low temperatures. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.2c05154 (2022).

  21. Chen, H. & Finlayson-Pitts, B. J. New particle formation from methanesulfonic acid and amines/ammonia as a function of temperature. Environ. Sci. Technol. 51, 243–252 (2016).

    Article  Google Scholar 

  22. Almeida, J. et al. Molecular understanding of sulphuric acid−amine particle nucleation in the atmosphere. Nature 502, 359–363 (2013).

    Article  Google Scholar 

  23. Kurtén, T., Loukonen, V., Vehkamäki, H. & Kulmala, M. Amines are likely to enhance neutral and ion-induced sulfuric acid−water nucleation in the atmosphere more effectively than ammonia. Atmos. Chem. Phys. 8, 4095–4103 (2008).

    Article  Google Scholar 

  24. Kürten, A. et al. Neutral molecular cluster formation of sulfuric acid−dimethylamine observed in real time under atmospheric conditions. Proc. Natl Acad. Sci. USA 111, 15019–15024 (2014).

  25. Cai, R. et al. The missing base molecules in atmospheric acid–base nucleation. Natl. Sci. Rev. 9, nwac137 (2022).

    Article  Google Scholar 

  26. Bianchi, F. et al. Insight into acid–base nucleation experiments by comparison of the chemical composition of positive, negative, and neutral clusters. Environ. Sci. Technol. 48, 13675–13684 (2014).

    Article  Google Scholar 

  27. Kürten, A. et al. New particle formation in the sulfuric acid−dimethylamine−water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model. Atmos. Chem. Phys. 18, 845–863 (2018).

    Article  Google Scholar 

  28. Stolzenburg, D. et al. Enhanced growth rate of atmospheric particles from sulfuric acid. Atmos. Chem. Phys. 20, 7359–7372 (2020).

    Article  Google Scholar 

  29. Lehtipalo, K. et al. The effect of acid–base clustering and ions on the growth of atmospheric nano-particles. Nature Commun. 7, 11594 (2016).

    Article  Google Scholar 

  30. Rondo, L. et al. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry (CIMS). J. Geophys. Res. Atmos. 121, 3036–3049 (2016).

    Article  Google Scholar 

  31. Ge, X., Wexler, A. S. & Clegg, S. L. Atmospheric amines - Part I. A review. Atmos. Environ. 45, 524–546 (2011).

    Article  Google Scholar 

  32. Hanson, D. R., McMurry, P. H., Jiang, J., Tanner, D. & Huey, L. G. Ambient pressure proton transfer mass spectrometry: detection of amines and ammonia. Environ. Sci. Technol. 45, 8881–8888 (2011).

    Article  Google Scholar 

  33. Yao, L. et al. Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity. Science 361, 278–281 (2018).

    Article  Google Scholar 

  34. Yin, R. et al. Acid–base clusters during atmospheric new particle formation in urban Beijing. Environ. Sci. Technol. 55, 10994–11005 (2021).

    Article  Google Scholar 

  35. Smith, J. N. et al. Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. Proc. Natl Acad. Sci. USA 107, 6634–6639 (2010).

  36. Creamean, J. M. et al. Measurements of aerosol chemistry during new particle formation events at a remote rural mountain site. Environ. Sci. Technol. 45, 8208–8216 (2011).

    Article  Google Scholar 

  37. Brean, J. et al. Open ocean and coastal new particle formation from sulfuric acid and amines around the Antarctic Peninsula. Nat. Geosci. 14, 383–388 (2021).

    Article  Google Scholar 

  38. Sindelarova, K. et al. Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmos. Chem. Phys. 14, 9317–9341 (2014).

    Article  Google Scholar 

  39. Molteni, U. et al. Formation of highly oxygenated organic molecules from α-pinene ozonolysis: chemical characteristics, mechanism, and kinetic model. ACS Earth Space Chem. 3, 873–883 (2019).

    Article  Google Scholar 

  40. Bianchi, F. et al. Highly oxygenated organic molecules (HOM) from gas-phase autoxidation involving peroxy radicals: a key contributor to atmospheric aerosol. Chem. Rev. 119, 3472–3509 (2019).

    Article  Google Scholar 

  41. Kirkby, J. et al. Ion-induced nucleation of pure biogenic particles. Nature 533, 521–526 (2016).

    Article  Google Scholar 

  42. Zhang, R. et al. Atmospheric new particle formation enhanced by organic acids. Science 304, 1487–1490 (2004).

    Article  Google Scholar 

  43. Elm, J., Myllys, N. & Kurtén, T. What is required for highly oxidized molecules to form clusters with sulfuric acid? J. Phys. Chem. A 121, 4578–4587 (2017).

    Article  Google Scholar 

  44. Lehtipalo, K. et al. Multi-component new particle formation from sulfuric acid, ammonia, and biogenic vapors. Sci. Adv. 4, 12 (2018).

    Article  Google Scholar 

  45. Frege, C. et al. Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation. Atmos. Chem. Phys. 18, 65–79 (2018).

    Article  Google Scholar 

  46. Simon, M. et al. Molecular understanding of new particle formation from α-pinene between −50 °C and 25 °C. Atmos. Chem. Phys. 20, 9183–9207 (2020).

    Article  Google Scholar 

  47. Ye, Q. et al. Molecular composition and volatility of nucleated particles from α-pinene oxidation between −50 °C and +25 °C. Environ. Sci. Technol. 53, 12537–12365 (2019).

    Article  Google Scholar 

  48. Tröstl, J. et al. The role of low-volatility organic compounds to initial particle growth in the atmosphere. Nature 533, 527–531 (2016).

    Article  Google Scholar 

  49. Stolzenburg, D. et al. Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. Proc. Natl Acad. Sci. USA 115, 9122–9127 (2018).

  50. Kulmala, M. et al. Direct observations of atmospheric aerosol nucleation. Science 339, 943–946 (2013).

    Article  Google Scholar 

  51. McFiggans, G. et al. Secondary organic aerosol reduced by mixture of atmospheric vapours. Nature 565, 587–593 (2019).

    Article  Google Scholar 

  52. Heinritzi, M. et al. Molecular understanding of the suppression of new particle formation by isoprene. Atmos. Chem. Phys. 20, 11809–11821 (2020).

    Article  Google Scholar 

  53. Yan, C. et al. Size-dependent influence of NOx on the growth rates of organic aerosol particles. Sci. Adv. 6, eaay4945 (2020).

    Article  Google Scholar 

  54. Nie, W. et al. NO at low concentration can enhance the formation of highly oxygenated biogenic molecules in the atmosphere. Nat. Commun. 14, 3347 (2023).

    Article  Google Scholar 

  55. Dada, L. et al. Role of sesquiterpenes in biogenic new particle formation. Sci. Adv. 9, eadi5297 (2023).

    Article  Google Scholar 

  56. Andreae, M. O. et al. Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin. Atmos. Chem. Phys. 18, 921–961 (2018).

    Article  Google Scholar 

  57. Williamson, C. J. et al. A large source of cloud condensation nuclei from new particle formation in the tropics. Nature 574, 399–403 (2019).

    Article  Google Scholar 

  58. Zha, Q. et al. Oxidized organic molecules in the tropical free troposphere over Amazonia. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwad138 (2023).

  59. Wang, X., Gordon, H., Grosvenor, D. P., Andreae, M. O. & Carslaw, K. S. Contribution of regional aerosol nucleation to low-level CCN in an Amazonian deep convective environment: results from a regionally nested global model. Atmos. Chem. Phys. 23, 4431–4461 (2023).

  60. Carslaw, K. S. et al. Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 503, 67–71 (2013).

    Article  Google Scholar 

  61. Gordon, H. et al. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proc. Natl Acad. Sci. USA 113, 12053–12058 (2016).

  62. Rose, C. et al. Observations of biogenic ion-induced cluster formation in the atmosphere. Sci. Adv. 4, eaar5218 (2018).

    Article  Google Scholar 

  63. Bianchi, F. et al. Biogenic particles formed in the Himalaya as an important source of free tropospheric aerosols. Nat. Geosci. 14, 4–9 (2020).

    Article  Google Scholar 

  64. Andreae, M. O., Andreae, T. W., Ditas, F. & Pöhlker, C. Frequent new particle formation at remote sites in the subboreal forest of North America. Atmos. Chem. Phys. 22, 2487–2505 (2022).

    Article  Google Scholar 

  65. Suni, T. et al. Formation and characteristics of ions and charged aerosol particles in a native Australian eucalypt forest. Atmos. Chem. Phys. 8, 129–139 (2008).

    Article  Google Scholar 

  66. Wang, M. et al. Photo-oxidation of aromatic hydrocarbons produces low-volatility organic compounds. Environ. Sci. Technol. 54, 7911–7921 (2020).

    Article  Google Scholar 

  67. Xiao, M. et al. The driving factors of new particle formation and growth in the polluted boundary layer. Atmos. Chem. Phys. 21, 14275–14291 (2021).

    Article  Google Scholar 

  68. Sipilä, M. et al. Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3. Nature 537, 532–534 (2016).

    Article  Google Scholar 

  69. He, X.-C. et al. Role of iodine oxoacids in atmospheric aerosol nucleation. Science 371, 589–595 (2021).

    Article  Google Scholar 

  70. Zhang, R. et al. Critical role of iodous acid in neutral iodine oxoacid nucleation. Environ. Sci. Technol. 56, 14166–14177 (2022).

    Article  Google Scholar 

  71. Finkenzeller, H. et al. The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source. Nat. Chem. 15, 129–135 (2023).

  72. Cuevas, C. A. et al. Rapid increase in atmospheric iodine levels in the North Atlantic since the mid-20th century. Nat. Commun. 9, 1452–1457 (2018).

    Article  Google Scholar 

  73. Grose, M. R., Cainey, J. M., McMinn, A. & Gibson, J. A. E. Coastal marine methyl iodide source and links to new particle formation at Cape Grim during February 2006. Environ. Chem. 4, 172–177 (2007).

    Article  Google Scholar 

  74. Mahajan, A. S. et al. Concurrent observations of atomic iodine, molecular iodine and ultrafine particles in a coastal environment. Atmos. Chem. Phys. 11, 2545–2555 (2011).

    Article  Google Scholar 

  75. Yu, H. et al. Iodine speciation and size distribution in ambient aerosols at a coastal new particle formation hotspot in China. Atmos. Chem. Phys. 19, 4025–4039 (2019).

    Article  Google Scholar 

  76. Baccarini, A. et al. Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions. Nat. Commun. 11, 4924 (2020).

    Article  Google Scholar 

  77. Glasoe, W. A. et al. Sulfuric acid nucleation: an experimental study of the effect of seven bases. J. Geophys. Res. Atmos. 120, 1933–1950 (2015).

    Article  Google Scholar 

  78. Schobesberger, S. et al. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proc. Natl Acad. Sci. USA 110, 17223–17228 (2013).

  79. Riccobono, F. et al. Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles. Science 344, 717–721 (2014).

    Article  Google Scholar 

  80. Zapadinsky, E., Passananti, M., Myllys, N., Kurtén, T. & Vehkamäki, H. Modeling on fragmentation of clusters inside a mass spectrometer. J. Phys. Chem. A 123, 611–624 (2019).

    Article  Google Scholar 

  81. Höpfner, M. et al. Ammonium nitrate particles formed in upper troposphere from ground ammonia sources during Asian monsoons. Nat. Geosci. 12, 608–612 (2019).

    Article  Google Scholar 

  82. Ge, C., Zhu, C., Francisco, J. S., Zeng, X. C. & Wang, J. A molecular perspective for global modeling of upper atmospheric NH3 from freezing clouds. Proc. Natl Acad. Sci. USA 115, 6147–6152 (2018).

  83. Wang, M. et al. Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation. Nature 605, 483–489 (2022).

    Article  Google Scholar 

  84. Wang, M. & Kong, W. et al. Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature 581, 184–189 (2020).

    Article  Google Scholar 

  85. Marten, R. et al. Survival of newly formed particles in haze conditions. Environ. Sci. Atmos. 2, 491–499 (2022).

    Article  Google Scholar 

  86. Kulmala, M. et al. Atmospheric gas-to-particle conversion: why NPF events are observed in megacities? Faraday Disc. 200, 271–288 (2017).

    Article  Google Scholar 

  87. Olenius, T., Yli-Juuti, T., Elm, J., Kontkanen, J. & Riipinen, I. in Physical Chemistry of Gas–Liquid Interfaces (eds. Faust, J. A. & House, J. E.) 315–352 (Elsevier, 2018).

  88. Lovejoy, E. R., Curtius, J. & Froyd, K. D. Atmospheric ion-induced nucleation of sulfuric acid and water. J. Geophys. Res. Atmos. https://doi.org/10.1029/2003JD004460 (2004).

  89. Ehrhart, S. et al. Comparison of the SAWNUC model with CLOUD measurements of sulphuric acid–water nucleation. J. Geophys. Res. Atmos. 121, 12401–12414 (2016).

    Article  Google Scholar 

  90. McGrath, M. J. et al. Atmospheric Cluster Dynamics Code: a flexible method for solution of the birth–death equations. Atmos. Chem. Phys. 12, 2345–2355 (2012).

    Article  Google Scholar 

  91. Yli-Juuti, T. et al. Model for acid–base chemistry in nanoparticle growth (MABNAG). Atmos. Chem. Phys. 13, 12507–12524 (2013).

    Article  Google Scholar 

  92. Ahlm, L. et al. Modeling the thermodynamics and kinetics of sulfuric acid–dimethylamine–water nanoparticle growth in the CLOUD chamber. Aerosol Sci. Technol. 50, 1017–1032 (2016).

    Article  Google Scholar 

  93. Määttänen, A. et al. New parameterizations for neutral and ion-induced sulfuric acid-water particle formation in nucleation and kinetic regimes. J. Geophys. Res. Atmos. 123, 1269–1296 (2018).

  94. Yu, F. et al. H2SO4–H2O–NH3 ternary ion-mediated nucleation (TIMN): kinetic-based model and comparison with CLOUD measurements. Atmos. Chem. Phys. 18, 17451–17474 (2018).

    Article  Google Scholar 

  95. Kürten, A. New particle formation from sulfuric acid and ammonia: nucleation and growth model based on thermodynamics derived from CLOUD measurements for a wide range of conditions. Atmos. Chem. Phys. 19, 5033–5050 (2019).

    Article  Google Scholar 

  96. Dunne, E. et al. Global atmospheric particle formation from CERN CLOUD measurements. Science 354, 1119–1124 (2016).

    Article  Google Scholar 

  97. Lelieveld, J. et al. Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proc. Natl Acad. Sci. USA 116, 7192–7197 (2019).

  98. McCoy, I. L. et al. Influences of recent particle formation on Southern Ocean aerosol variability and low cloud properties. J. Geophys. Res. Atmos. 126, e2020JD033529 (2021).

    Article  Google Scholar 

  99. Novelli, A. et al. Characterisation of an inlet pre-injector laser-induced fluorescence instrument for the measurement of atmospheric hydroxyl radicals. Atmos. Meas. Tech. 7, 3413–3430 (2014).

    Article  Google Scholar 

  100. Schervish, M. & Donahue, N. M. Peroxy radical chemistry and the volatility basis set. Atmos. Chem. Phys. 20, 1183–1199 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the many scientists who performed the CLOUD research reported here. We thank the European Organization for Nuclear Research (CERN) for supporting CLOUD with important technical and financial resources and for providing a particle beam from the CERN Proton Synchrotron. We thank our research institutes, national funding agencies and the European Union for providing financial support for the CLOUD experiment. We gratefully acknowledge financial support from the following sources: the German Ministry of Science and Education (CLOUD-22, 01LK2201), ACCC Flagship programme of the Academy of Finland (grant nos. 337549 and 337550), the Academy of Finland (grant no. 336557), the Swiss National Science Foundation (SNF grant no. 200021_213071), the Faculty of Physics at the University of Vienna, the University of Tartu (grant no. PRG714), Horizon 2020 (EMME-CARE, 857712), Horizon Europe MSCA-DN (CLOUD-DOC, 101073026), the NASA ROSES programme (grant no. 80NSSC19K0949) and the United States National Science Foundation (NSF grant nos. NSF-AGS-2215527, NSF-AGS-1602086, NSF-AGS-213208, NSF-AGS-2215489, NSF-AGS-2027252 and NSF-AGS-2215522).

Author information

Authors and Affiliations

Authors

Contributions

J.K., A.A., U.B., K.S.C, T.C., J.C, N.M.D., I.E.H., R.C.F., H.G., A.H., H.H., H.J., M.K., A.K., A.L., K.L., J.L., O.M., I.R., F.S., A.T., A.V., R.V., P.M.W. and D.R.W. contributed to the CLOUD research reported in the manuscript. J.K. wrote the manuscript. J.K. prepared Figs. 13, and N.M.D. prepared Fig. 4 together with J.K. All authors contributed to and approved the final version of the manuscript.

Corresponding author

Correspondence to Jasper Kirkby.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Song Guo, Fangqun Yu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Xujia Jiang, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Range of parameters for all CLOUD experiments
Extended Data Table 2 Range of parameters for selected CLOUD nucleation and growth rate experiments

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirkby, J., Amorim, A., Baltensperger, U. et al. Atmospheric new particle formation from the CERN CLOUD experiment. Nat. Geosci. 16, 948–957 (2023). https://doi.org/10.1038/s41561-023-01305-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-023-01305-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing