Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Micronutrient availability in Precambrian oceans controlled by greenalite formation

Subjects

Abstract

Metabolisms that evolved in the Archaean era (4.0–2.5 billion years ago) preferentially selected iron, manganese and molybdenum to form metalloproteins, whereas the majority of zinc-, copper- and vanadium-binding proteins emerged much later. The initial preference for these elements is commonly interpreted to reflect their availability in anoxic seawater, with free sulfide proposed as a key influence. While sulfidic waters reduce the availability of zinc and copper, they also remove molybdenum and leave behind vanadium. Furthermore, current geochemical data reflect predominantly ferruginous (Fe2+-rich), rather than sulfidic, conditions. Consistent with this, recent sedimentological work has uncovered abundant iron silicate minerals in Archaean rocks. Here we quantify metal partitioning during the formation and subsequent diagenesis of an Fe(ii) silicate mineral, a precursor to crystalline greenalite, in both seawater and hot hydrothermal fluids. Our data show that Fe(ii) silicates could have precipitated rapidly in Archaean hydrothermal plumes, severely attenuating hydrothermal delivery of key nutrients, in particular copper, zinc and vanadium. These results provide a mechanistic explanation for metal availability patterns in Archaean oceans that is consistent with temporal patterns of metal utilization predicted from protein structures and comparative genomics. Further, our data suggest natural greenalite may provide an archive of metal availability in deep time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental data showing the relationship between the solubility and kinetics of Fe(ii) silicate precipitation with Fe2+, SiO2(aq.), pH and temperature52.
Fig. 2: Iron, silica and trace metal concentrations in solution during Fe(ii) silicate precipitation and calculated partition coefficients52.
Fig. 3: Schematic depiction of trace metal cycling during greenalite precipitation, diagenesis and burial.

Similar content being viewed by others

Data availability

A supplementary file containing experimental data is available online in the BGS data repository (https://doi.org/10.5285/c40cdd54-583a-43b2-b5fe-1784cbabfd71). Correspondence and requests for data or materials should be directed to the corresponding author.

References

  1. Saito, M. A., Sigman, D. M. & Morel, F. M. M. The bioinorganic chemistry of the ancient ocean: the co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean–Proterozoic boundary? Inorg. Chim. Acta 356, 308–318 (2003).

    Article  Google Scholar 

  2. Anbar, A. D. & Knoll, A. H. Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297, 1137–1143 (2002).

    Article  Google Scholar 

  3. Dupont, C. L., Butcher, A., Valas, R. E., Bourne, P. E. & Caetano-Anollés, G. History of biological metal utilization inferred through phylogenomic analysis of protein structures. Proc. Natl Acad. Sci. USA 107, 10567–10572 (2010).

    Article  Google Scholar 

  4. Dupont, C. L., Yang, S., Palenik, B. & Bourne, P. E. Modern proteomes contain putative imprints of ancient shifts in trace metal geochemistry. Proc. Natl Acad. Sci. USA 103, 17822–17827 (2006).

    Article  Google Scholar 

  5. Guilbaud, R., Poulton, S. W., Butterfield, N. J., Zhu, M. & Shields-Zhou, G. A. A global transition to ferruginous conditions in the early Neoproterozoic oceans. Nat. Geosci. 8, 466–470 (2015).

    Article  Google Scholar 

  6. Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).

    Article  Google Scholar 

  7. Zegeye, A. et al. Green rust formation controls nutrient availability in a ferruginous water column. Geology 40, 599–602 (2012).

    Article  Google Scholar 

  8. Crowe, S. A. et al. Deep-water anoxygenic photosythesis in a ferruginous chemocline. Geobiology 12, 322–339 (2014).

    Article  Google Scholar 

  9. Maliva, R. G., Knoll, A. H. & Simonson, B. M. Secular change in the Precambrian silica cycle: insights from chert petrology. Geol. Soc. Am. Bull. 117, 835–845 (2005).

    Article  Google Scholar 

  10. Tosca, N. J., Guggenheim, S. & Pufahl, P. K. An authigenic origin for Precambrian greenalite: implications for iron formation and the chemistry of ancient seawater. Geol. Soc. Am. Bull. https://doi.org/10.1130/B31339.1 (2016).

  11. Hinz, I. L., Nims, C., Theuer, S., Templeton, A. S. & Johnson, J. E. Ferric iron triggers greenalite formation in simulated Archean seawater. Geology 49, 905–910 (2021).

    Article  Google Scholar 

  12. Jiang, C. Z. & Tosca, N. J. Fe(ii)-carbonate precipitation kinetics and the chemistry of anoxic ferruginous seawater. Earth Planet. Sci. Lett. 506, 231–242 (2019).

    Article  Google Scholar 

  13. Rasmussen, B., Krapež, B., Muhling, J. R. & Suvorova, A. Precipitation of iron silicate nanoparticles in early Precambrian oceans marks Earth’s first iron age. Geology 43, 303–306 (2015).

    Article  Google Scholar 

  14. Rasmussen, B., Muhling, J. R., Suvorova, A. & Krapež, B. Greenalite precipitation linked to the deposition of banded iron formations downslope from a late Archean carbonate platform. Precambrian Res. 290, 49–62 (2017).

    Article  Google Scholar 

  15. Rasmussen, B., Krapež, B. & Muhling, J. R. Hematite replacement of iron-bearing precursor sediments in the 3.46-b.y.-old Marble Bar Chert, Pilbara craton, Australia. Geol. Soc. Am. Bull. 126, 1245–1258 (2014).

    Article  Google Scholar 

  16. Pufahl, P. K., Anderson, S. L. & Hiatt, E. E. Dynamic sedimentation of Paleoproterozoic continental margin iron formation, Labrador Trough, Canada: paleoenvironments and sequence stratigraphy. Sediment. Geol. 309, 48–65 (2014).

    Article  Google Scholar 

  17. Edwards, C. T., Pufahl, P. K., Hiatt, E. E. & Kyser, T. K. Paleoenvironmental and taphonomic controls on the occurrence of Paleoproterozoic microbial communities in the 1.88 Ga Ferriman Group, Labrador Trough, Canada. Precambrian Res. 212–213, 91–106 (2012).

    Article  Google Scholar 

  18. Rasmussen, B., Muhling, J. R. & Krapež, B. Greenalite and its role in the genesis of early Precambrian iron formations—a review. Earth Sci. Rev. 217, 103613 (2021).

    Article  Google Scholar 

  19. Rasmussen, B., Muhling, J. R., Tosca, N. J. & Tsikos, H. Evidence for anoxic shallow oceans at 2.45 Ga: implications for the rise of oxygenic photosynthesis. Geology 47, 622–626 (2019).

    Article  Google Scholar 

  20. Johnson, J. E., Muhling, J. R., Cosmidis, J., Rasmussen, B. & Templeton, A. S. Low‐Fe(iii) dreenalite was a primary mineral from Neoarchean oceans. Geophys. Res. Lett. https://doi.org/10.1002/2017GL076311 (2018).

  21. Halevy, I. & Bachan, A. The geologic history of seawater pH. Science 355, 1069–1071 (2017).

    Article  Google Scholar 

  22. Krissansen-Totton, J., Arney, G. N. & Catling, D. C. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model. Proc. Natl Acad. Sci. USA 115, 4105–4110 (2018).

    Article  Google Scholar 

  23. Halevy, I., Alesker, M., Schuster, E. M., Popovitz-Biro, R. & Feldman, Y. A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nat. Geosci. 10, 135–139 (2017).

    Article  Google Scholar 

  24. Tosca, N. J., Jiang, C. Z., Rasmussen, B. & Muhling, J. Products of the iron cycle on the early Earth. Free Radic. Biol. Med. 140, 138–153 (2019).

    Article  Google Scholar 

  25. Tosca, N. J. & Tutolo, B. M. Hydrothermal vent fluid–seawater mixing and the origins of Archean iron formation. Geochim. Cosmochim. Acta 352, 51–68 (2023).

    Article  Google Scholar 

  26. Urabe, T. et al. The effect of magmatic activity on hydrothermal venting along the superfast-spreading East Pacific Rise. Science 269, 1092–1095 (1995).

    Article  Google Scholar 

  27. Krapež, B., Barley, M. E. & Pickard, A. L. Hydrothermal and resedimented origins of the precursor sediments to banded iron formation: sedimentological evidence from the Early Palaeoproterozoic Brockman Supersequence of Western Australia. Sedimentology 50, 979–1011 (2003).

    Article  Google Scholar 

  28. Dodd, M. S. et al. Widespread occurrences of variably crystalline 13C-depleted graphitic carbon in banded iron formations. Earth Planet. Sci. Lett. 512, 163–174 (2019).

    Article  Google Scholar 

  29. Jacobsen, S. B. & Pimentel-Klose, M. R. Nd isotopic variations in Precambrian banded iron formations. Geophys. Res. Lett. 15, 393–396 (1988).

    Article  Google Scholar 

  30. Derry, L. A. & Jacobsen, S. B. The chemical evolution of Precambrian seawater: evidence from REEs in banded iron formations. Geochim. Cosmochim. Acta 54, 2965–2977 (1990).

    Article  Google Scholar 

  31. Beukes, N. J., Klein, C., Kaufman, A. J. & Hayes, J. M. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa. Econ. Geol. 85, 663–690 (1990).

    Article  Google Scholar 

  32. Kump, L. R. & Seyfried, W. E. Jr. Hydrothermal Fe fluxes during the Precambrian: effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth Planet. Sci. Lett. 235, 654–662 (2005).

    Article  Google Scholar 

  33. Tivey, M. K. Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography 20, 50–65 (2007).

  34. Rasmussen, B., Muhling, J. R. & Fischer, W. W. Greenalite nanoparticles in alkaline vent plumes as templates for the origin of life. Astrobiology 21, 246–259 (2021).

    Article  Google Scholar 

  35. Klein, C. Greenalite, stilpnomelane, minnesotaite, crocidolite and carbonates in a very low-grade metamorphic Precambrian iron formation. Can. Mineral. 12, 475–498 (1974).

    Google Scholar 

  36. Nutman, A. P., Bennett, V. C. & Friend, C. R. L. Seeing through the magnetite: reassessing Eoarchean atmosphere composition from Isua (Greenland) ≥3.7 Ga banded iron formations. Geosci. Front. https://doi.org/10.1016/j.gsf.2017.02.008 (2017).

  37. Rasmussen, B., Muhling, J. R., Suvorova, A. & Krapež, B. Dust to dust: evidence for the formation of ‘primary’ hematite dust in banded iron formations via oxidation of iron silicate nanoparticles. Precambrian Res. 284, 49–63 (2016).

    Article  Google Scholar 

  38. Johnson, B. R. et al. Phosphorus burial in ferruginous SiO2-rich Mesoproterozoic sediments. Geology 48, 92–96 (2019).

    Article  Google Scholar 

  39. Roshan, S., Wu, J. & Jenkins, W. J. Long-range transport of hydrothermal dissolved Zn in the tropical South Pacific. Mar. Chem. 183, 25–32 (2016).

    Article  Google Scholar 

  40. Findlay, A. J., Gartman, A., Shaw, T. J. & Luther, G. W. Trace metal concentration and partitioning in the first 1.5 m of hydrothermal vent plumes along the Mid-Atlantic Ridge: TAG, Snakepit, and Rainbow. Chem. Geol. 412, 117–131 (2015).

    Article  Google Scholar 

  41. Swanner, E. D. et al. Cobalt and marine redox evolution. Earth Planet. Sci. Lett. 390, 253–263 (2014).

    Article  Google Scholar 

  42. Scott, C. et al. Bioavailability of zinc in marine systems through time. Nat. Geosci. 6, 125–128 (2013).

    Article  Google Scholar 

  43. Robbins, L. J. et al. Authigenic iron oxide proxies for marine zinc over geological time and implications for eukaryotic metallome evolution. Geobiology 11, 295–306 (2013).

    Article  Google Scholar 

  44. Konhauser, K. O. et al. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458, 750–753 (2009).

    Article  Google Scholar 

  45. Scott, C. et al. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452, 456–459 (2008).

    Article  Google Scholar 

  46. Robbins, L. J. et al. Limited Zn and Ni mobility during simulated iron formation diagenesis. Chem. Geol. 402, 30–39 (2015).

    Article  Google Scholar 

  47. Sumoondur, A., Shaw, S., Ahmed, I. & Benning, L. G. Green rust as a precursor for magnetite: an in situ synchrotron based study. Mineral. Mag. 72, 201–204 (2016).

    Article  Google Scholar 

  48. Moore, E. K., Jelen, B. I., Giovannelli, D., Raanan, H. & Falkowski, P. G. Metal availability and the expanding network of microbial metabolisms in the Archaean eon. Nat. Geosci. 10, 629–636 (2017).

    Article  Google Scholar 

  49. David, L. A. & Alm, E. J. Rapid evolutionary innovation during an Archaean genetic expansion. Nature 469, 93–96 (2011).

    Article  Google Scholar 

  50. Zerkle, A. L., House, C. H., Cox, R. P. & Canfield, D. E. Metal limitation of cyanobacterial N2 fixation and implications for the Precambrian nitrogen cycle. Geobiology 4, 285–297 (2006).

    Article  Google Scholar 

  51. Stüeken, E. E., Buick, R., Guy, B. M. & Koehler, M. C. Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr. Nature 520, 666–669 (2015).

    Article  Google Scholar 

  52. Tostevin, R. Solubility, kinetics and metal drawdown during precipitation of Fe(II)-silicate over a range of temperatures. NERC EDS National Geoscience Data Centre https://doi.org/10.5285/c40cdd54-583a-43b2-b5fe-1784cbabfd71 (2023).

  53. Kandegedara, A. & Rorabacher, D. B. Noncomplexing Tertiary amines as ‘better’ buffers covering the range of pH 3−11. Temperature dependence of their acid dissociation constants. Anal. Chem. 71, 3140–3144 (1999).

    Article  Google Scholar 

  54. Dietzel, M. Dissolution of silicates and the stability of polysilicic acid. Geochim. Cosmochim. Acta 64, 3275–3281 (2000).

    Article  Google Scholar 

  55. Siever, R. The silica cycle in the Precambrian. Geochim. Cosmochim. Acta 56, 3265–3272 (1992).

    Article  Google Scholar 

  56. Mortlock, R. A. et al. Silica and germanium in Pacific Ocean hydrothermal vents and plumes. Earth Planet. Sci. Lett. 119, 365–378 (1993).

    Article  Google Scholar 

  57. Crowe, S. A. et al. Sulfate was a trace constituent of Archean seawater. Science 346, 735–739 (2014).

    Article  Google Scholar 

  58. Dent, A. J. et al. B18: a core XAS spectroscopy beamline for Diamond. J. Phys. Conf. Ser. 190, 012039 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

R.T. acknowledges financial support from NERC grant NE/M013014/1, NRF-DSIs CIMERA and GENUS and the BIOGRIP platform. We are grateful to N. Tosca for access to laboratory facilities and comments on an earlier version of this paper and to E. Tipper, M. Greaves and R. Hindshaw for assistance with ICP-OES analyses at the Department of Earth Science, University of Cambridge.

Author information

Authors and Affiliations

Authors

Contributions

R.T. designed the study, performed the experiments and analysed the results. I.A.M.A. and R.T. acquired synchrotron data, and I.A.M.A. modelled the results. R.T. wrote the paper with input from I.A.M.A.

Corresponding author

Correspondence to Rosalie Tostevin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Romain Guilbaud, Elizabeth Swanner and Jena Johnson for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5, Tables 1 and 2 and Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tostevin, R., Ahmed, I.A.M. Micronutrient availability in Precambrian oceans controlled by greenalite formation. Nat. Geosci. 16, 1188–1193 (2023). https://doi.org/10.1038/s41561-023-01294-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-023-01294-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing