Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phosphorus availability on the early Earth and the impacts of life

A Publisher Correction to this article was published on 22 May 2023

This article has been updated

Abstract

Phosphorus (P) is critical to modern biochemical functions and can control ecosystem growth. It was presumably important as a reagent in prebiotic chemistry. However, on the early Earth, P sources may have consisted primarily of poorly soluble calcium phosphates, which may have rendered phosphate as a minimally available nutrient or reagent if these minerals were the sole source. Here, we review aqueous P availability on the early Earth (>2.5 Gyr ago), considering both mineral sources and geochemical sinks relevant to its solvation, and activation by abiotic and biological pathways. Phosphorus on Earth’s early surface would have been present as a mixture of phosphate minerals, as a minor element in silicate minerals, and in reactive, reduced phases from accreted dust, meteorites and asteroids. These P sources would have weathered and plausibly furnished the prebiotic Earth with abundant and potentially reactive P. After the origin of a biosphere, life evolved to draw on not just reactive available P sources, but also insoluble and unreactive sources. The rise of an ecosystem dependent on this element at some point forged a P-limited biosphere, with evolutionary stress forcing the efficient extraction and recycling of P from both abiotic and biotic sources and sinks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modern and ancient P inventories of the Earth.
Fig. 2: Prebiotic versus biotic P availability.
Fig. 3: Cellular acquisition of various P species.
Fig. 4: P sources, sinks and recycling pathways.
Fig. 5: Simplified model of marine Pi availability.
Fig. 6: Parameter space of global P cycling evolution11,27,52,72,77,78,89,108.

Similar content being viewed by others

Change history

References

  1. Westheimer, F. H. Why nature chose phosphates. Science 235, 1173–1178 (1987).

    Article  Google Scholar 

  2. Schroeder, G. K., Lad, C., Wyman, P., Williams, N. H. & Wolfenden, R. The time required for water attack at the phosphorus atom of simple phosphodiesters and of DNA. Proc. Natl Acad. Sci. USA 103, 4052–4055 (2006).

    Article  Google Scholar 

  3. Dürr-Mayer, T. et al. The chemistry of branched condensed phosphates. Nat. Commun. 12, 5368 (2021).

    Article  Google Scholar 

  4. Bowlin, M. Q. & Gray, M. J. Inorganic polyphosphate in host and microbe biology. Trends Microbiol. 29, 1013–1023 (2021).

    Article  Google Scholar 

  5. Lang, C., Lago, J. & Pasek, M. A. in Handbook of Astrobiology (Ed. Kolb, V. M) 361–369 (CRC Press, 2018).

  6. Pasek, M. A. in Prebiotic Chemistry and Chemical Evolution of Nucleic Acids (Ed. Menor-Salván, C.) 175–197 (Springer, 2018).

  7. Goldford, J. E., Hartman, H., Smith, T. F. & Segrè, D. Remnants of an ancient metabolism without phosphate. Cell 168, 1126–1134.e1129 (2017).

    Article  Google Scholar 

  8. Cafferty, B. J., Fialho, D. M., Khanam, J., Krishnamurthy, R. & Hud, N. V. Spontaneous formation and base pairing of plausible prebiotic nucleotides in water. Nat. Commun. 7, 11328 (2016).

    Article  Google Scholar 

  9. Pasek, M. A. Thermodynamics of prebiotic phosphorylation. Chem. Rev. 120, 4690–4706 (2019).

    Article  Google Scholar 

  10. Hao, J. et al. Cycling phosphorus on the Archean Earth: Part II. Phosphorus limitation on primary production in Archean ecosystems. Geochim. Cosmochim. Acta 280, 360–377 (2020).

    Article  Google Scholar 

  11. Herschy, B. et al. Archean phosphorus liberation induced by iron redox geochemistry. Nat. Commun. 9, 1346 (2018).

    Article  Google Scholar 

  12. Hess, B. L., Piazolo, S. & Harvey, J. Lightning strikes as a major facilitator of prebiotic phosphorus reduction on early Earth. Nat. Commun. 12, 1535 (2021).

    Article  Google Scholar 

  13. Plane, J. M., Feng, W. & Douglas, K. M. Phosphorus chemistry in the Earth’s upper atmosphere. J. Geophys. Res. Space Phys. 126, e2021JA029881 (2021).

    Article  Google Scholar 

  14. Lodders, K. Solar System abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220 (2003).

    Article  Google Scholar 

  15. Wood, B. J., Smythe, D. J. & Harrison, T. The condensation temperatures of the elements: a reappraisal. Am. Miner. 104, 844–856 (2019).

    Article  Google Scholar 

  16. Mezger, K., Schönbächler, M. & Bouvier, A. Accretion of the Earth—missing components? Space Sci. Rev. 216, 27 (2020).

    Article  Google Scholar 

  17. Righter, K., Pando, K., Danielson, L. & Lee, C.-T. Partitioning of Mo, P and other siderophile elements (Cu, Ga, Sn, Ni, Co, Cr, Mn, V, and W) between metal and silicate melt as a function of temperature and silicate melt composition. Earth Planet. Sci. Lett. 291, 1–9 (2010).

    Article  Google Scholar 

  18. Gu, T., Stagno, V. & Fei, Y. Partition coefficient of phosphorus between liquid metal and silicate melt with implications for the Martian magma ocean. Phys. Earth Planet. Inter. 295, 106298 (2019).

    Article  Google Scholar 

  19. Cox, G. M., Lyons, T. W., Mitchell, R. N., Hasterok, D. & Gard, M. Linking the rise of atmospheric oxygen to growth in the continental phosphorus inventory. Earth Planet Sci. Lett. 489, 28–36 (2018).

    Article  Google Scholar 

  20. Pasek, M. A., Harnmeijer, J. P., Buick, R., Gull, M. & Atlas, Z. Evidence for reactive reduced phosphorus species in the early Archean ocean. Proc. Natl Acad. Sci. USA 110, 10089–10094 (2013).

    Article  Google Scholar 

  21. Dhuime, B., Hawkesworth, C. J., Delavault, H. & Cawood, P. A. Rates of generation and destruction of the continental crust: implications for continental growth. Phil. Trans. R. Soc. A 376, 20170403 (2018).

    Article  Google Scholar 

  22. Korenaga, J. Hadean geodynamics and the nature of early continental crust. Precambrian Res. 359, 106178 (2021).

    Article  Google Scholar 

  23. McCoy-West, A. J. et al. Extensive crustal extraction in Earth’s early history inferred from molybdenum isotopes. Nat. Geosci. 12, 946–951 (2019).

    Article  Google Scholar 

  24. Paytan, A. & McLaughlin, K. The oceanic phosphorus cycle. Chem. Rev. 107, 563–576 (2007).

    Article  Google Scholar 

  25. Green, T. & Watson, E. Crystallization of apatite in natural magmas under high pressure, hydrous conditions, with particular reference to ‘orogenic’ rock series. Contrib. Mineral. Petrol. 79, 96–105 (1982).

    Article  Google Scholar 

  26. Haggerty, S. E., Fung, A. T. & Burt, D. M. Apatite, phosphorus and titanium in eclogitic garnet from the upper mantle. Geophys. Res. Lett. 21, 1699–1702 (1994).

    Article  Google Scholar 

  27. Walton, C. R. et al. Phosphorus mineral evolution and prebiotic chemistry: from minerals to microbes. Earth-Sci. Rev. 221, 103806 (2021).

    Article  Google Scholar 

  28. Greber, N. D. et al. Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago. Science 357, 1271–1274 (2017).

    Article  Google Scholar 

  29. Greber, N. D. & Dauphas, N. The chemistry of fine-grained terrigenous sediments reveals a chemically evolved Paleoarchean emerged crust. Geochim. Cosmochim. Acta 255, 247–264 (2019).

    Article  Google Scholar 

  30. Tang, M., Chen, K. & Rudnick, R. L. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science 351, 372–375 (2016).

    Article  Google Scholar 

  31. Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001).

    Article  Google Scholar 

  32. Zahnle, K., Schaefer, L. & Fegley, B. Earth’s earliest atmospheres. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a004895 (2010).

  33. Javaux, E. J. Challenges in evidencing the earliest traces of life. Nature 572, 451–460 (2019).

    Article  Google Scholar 

  34. Ward, L. M., Rasmussen, B. & Fischer, W. W. Primary productivity was limited by electron donors prior to the advent of oxygenic photosynthesis. J. Geophys. Res. Biogeosci. 124, 211–226 (2019).

    Article  Google Scholar 

  35. Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009).

    Article  Google Scholar 

  36. Liu, Z. et al. Harnessing chemical energy for the activation and joining of prebiotic building blocks. Nat. Chem. 12, 1023–1028 (2020).

    Article  Google Scholar 

  37. Maguire, O. R., Smokers, I. B. A. & Huck, W. T. S. A physicochemical orthophosphate cycle via a kinetically stable thermodynamically activated intermediate enables mild prebiotic phosphorylations. Nat. Commun. 12, 5517 (2021).

    Article  Google Scholar 

  38. Ritson, D. J., Mojzsis, S. J. & Sutherland, J. D. Supply of phosphate to early Earth by photogeochemistry after meteoritic weathering. Nat. Geosci. 13, 344–348 (2020).

    Article  Google Scholar 

  39. Turner, A. M. et al. An interstellar synthesis of phosphorus oxoacids. Nat. Commun. 9, 3851 (2018).

    Article  Google Scholar 

  40. Cooper, G. W., Onwo, W. M. & Cronin, J. R. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite. Geochim. Cosmochim. Acta 56, 4109–4115 (1992).

    Article  Google Scholar 

  41. Budde, G., Burkhardt, C. & Kleine, T. Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nat. Astron. 3, 736–741 (2019).

    Article  Google Scholar 

  42. Gibard, C. et al. Geochemical sources and availability of amidophosphates on the early Earth. Angew. Chem. Int. Ed. 58, 8151–8155 (2019).

    Article  Google Scholar 

  43. Gibard, C., Bhowmik, S., Karki, M., Kim, E.-K. & Krishnamurthy, R. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nat. Chem. 10, 212–217 (2018).

    Article  Google Scholar 

  44. Pasek, M. A., Gull, M. & Herschy, B. Phosphorylation on the early Earth. Chem. Geol. 110, 10089–10094 (2017).

    Google Scholar 

  45. Britvin, S. N. et al. Cyclophosphates, a new class of native phosphorus compounds, and some insights into prebiotic phosphorylation on early Earth. Geology 49, 382–386 (2021).

    Article  Google Scholar 

  46. Pasek, M. A. Schreibersite on the early Earth: scenarios for prebiotic phosphorylation. Geosci. Front. 8, 329–335 (2017).

    Article  Google Scholar 

  47. Kim, H.-J. & Benner, S. A. Abiotic synthesis of nucleoside 5′-triphosphates with nickel borate and cyclic trimetaphosphate (CTMP). Astrobiology 21, 298–306 (2021).

    Article  Google Scholar 

  48. Cheng, C. et al. Phosphorylation of adenosine with trimetaphosphate under simulated prebiotic conditions. Orig. Life Evol. Biosph. 32, 219–224 (2002).

    Article  Google Scholar 

  49. Akoopie, A., Arriola, J. T., Magde, D. & Müller, U. F. A GTP-synthesizing ribozyme selected by metabolic coupling to an RNA polymerase ribozyme. Sci. Adv. 7, eabj7487 (2021).

    Article  Google Scholar 

  50. Omran, A., Abbatiello, J., Feng, T. & Pasek, M. A. Oxidative phosphorus chemistry perturbed by minerals. Life 12, 198 (2022).

    Article  Google Scholar 

  51. Feng, T., Gull, M., Omran, A., Abbott-Lyon, H. & Pasek, M. A. Evolution of ephemeral phosphate minerals on planetary environments. ACS Earth Space Chem. 5, 1647–1656 (2021).

    Article  Google Scholar 

  52. Marchi, S. et al. Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511, 578–582 (2014).

    Article  Google Scholar 

  53. White, A. K. & Metcalf, W. W. Microbial metabolism of reduced phosphorus compounds. Annu. Rev. Microbiol. 61, 379–400 (2007).

    Article  Google Scholar 

  54. Markou, G., Vandamme, D. & Muylaert, K. Microalgal and cyanobacterial cultivation: the supply of nutrients. Water Res. 65, 186–202 (2014).

    Article  Google Scholar 

  55. Wu, J., Sunda, W., Boyle, E. A. & Karl, D. M. Phosphate depletion in the western North Atlantic Ocean. Science 289, 759–762 (2000).

    Article  Google Scholar 

  56. Hou, E. et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 637 (2020).

    Article  Google Scholar 

  57. Ruttenberg, K. in Treatise on Geochemistry 2nd edn, Vol. 10, 499–558 (Elsevier, 2014).

  58. Yang, K. & Metcalf, W. W. A new activity for an old enzyme: Escherichia coli bacterial alkaline phosphatase is a phosphite-dependent hydrogenase. Proc. Natl Acad. Sci. USA 101, 7919–7924 (2004).

    Article  Google Scholar 

  59. Sebastian, M. & Ammerman, J. W. The alkaline phosphatase PhoX is more widely distributed in marine bacteria than the classical PhoA. ISME J. 3, 563–572 (2009).

    Article  Google Scholar 

  60. Lidbury, I. D. et al. A widely distributed phosphate-insensitive phosphatase presents a route for rapid organophosphorus remineralization in the biosphere. Proc. Natl Acad. Sci. USA 119, e2118122119 (2022).

    Article  Google Scholar 

  61. Dyhrman, S. T. et al. Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature 439, 68–71 (2006).

    Article  Google Scholar 

  62. Figueroa, I. A. & Coates, J. D. in Advances in Applied Microbiology Vol. 98 (eds Sariaslani, S. & Gadd, G. M.) 93–117 (Academic Press, 2017).

  63. Metcalf, W. W. & Wolfe, R. S. Molecular genetic analysis of phosphite and hypophosphite oxidation by Pseudomonas stutzeri WM88. J. Bacteriol. 180, 5547–5558 (1998).

    Article  Google Scholar 

  64. Schink, B. & Friedrich, M. Phosphite oxidation by sulphate reduction. Nature 406, 37 (2000).

    Article  Google Scholar 

  65. Figueroa, I. A. et al. Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway. Proc. Natl Acad. Sci. USA 115, E92–E101 (2018).

    Article  Google Scholar 

  66. Ewens, S. D. et al. The diversity and evolution of microbial dissimilatory phosphite oxidation. Proc. Natl Acad. Sci. USA 118, e2020024118 (2021).

    Article  Google Scholar 

  67. Mao, Z. et al. Phosphitispora fastidiosa gen. nov. sp. nov., a new dissimilatory phosphite-oxidizing anaerobic bacterium isolated from anaerobic sewage sludge. Int. J. Syst. Evol. Microbiol. 71, 005142 (2021).

    Article  Google Scholar 

  68. Schwartz, A. W. Phosphorus in prebiotic chemistry. Phil. Trans. R. Soc. B 361, 1743–1749 (2006).

    Article  Google Scholar 

  69. Jusino-Maldonado, M. et al. A global network model of abiotic phosphorus cycling on Earth through time. Sci. Rep. 12, 9348 (2022).

    Article  Google Scholar 

  70. Hartmann, J., Moosdorf, N., Lauerwald, R., Hinderer, M. & West, A. J. Global chemical weathering and associated P-release—the role of lithology, temperature and soil properties. Chem. Geol. 363, 145–163 (2014).

    Article  Google Scholar 

  71. Tostevin, R. & Mills, B. J. Reconciling proxy records and models of Earth’s oxygenation during the Neoproterozoic and Palaeozoic. Interface Focus 10, 20190137 (2020).

    Article  Google Scholar 

  72. Kipp, M. A. & Stüeken, E. E. Biomass recycling and Earth’s early phosphorus cycle. Sci. Adv. 3, eaao4795 (2017).

    Article  Google Scholar 

  73. Föllmi, K. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth-Sci. Rev. 40, 55–124 (1996).

    Article  Google Scholar 

  74. Korenaga, J., Planavsky, N. J. & Evans, D. A. D. Global water cycle and the coevolution of the Earth’s interior and surface environment. Phil. Trans. R. Soc. A 375, 20150393 (2017).

    Article  Google Scholar 

  75. Flament, N., Coltice, N. & Rey, P. F. The evolution of the 87Sr/86Sr of marine carbonates does not constrain continental growth. Precambrian Res. 229, 177–188 (2013).

    Article  Google Scholar 

  76. Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax1420 (2020).

    Article  Google Scholar 

  77. Hao, J., Knoll, A. H., Huang, F., Hazen, R. M. & Daniel, I. Cycling phosphorus on the Archean Earth: Part I. Continental weathering and riverine transport of phosphorus. Geochim. Cosmochim. Acta 273, 70–84 (2020).

    Article  Google Scholar 

  78. Rasmussen, B., Muhling, J. R., Suvorova, A. & Fischer, W. W. Apatite nanoparticles in 3.46–2.46 Ga iron formations: evidence for phosphorus-rich hydrothermal plumes on early Earth. Geology 49, 647–651 (2021).

    Article  Google Scholar 

  79. Syverson, D. D. et al. Nutrient supply to planetary biospheres from anoxic weathering of mafic oceanic crust. Geophys. Res. Lett. 48, e2021GL094442 (2021).

    Article  Google Scholar 

  80. Pasek, M. A. & Lauretta, D. S. Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth. Astrobiology 5, 515–535 (2005).

    Article  Google Scholar 

  81. Jones, C., Nomosatryo, S., Crowe, S. A., Bjerrum, C. J. & Canfield, D. E. Iron oxides, divalent cations, silica, and the early Earth phosphorus crisis. Geology 43, 135–138 (2015).

    Article  Google Scholar 

  82. Planavsky, N. J. et al. The evolution of the marine phosphate reservoir. Nature 467, 1088–1090 (2010).

    Article  Google Scholar 

  83. Reinhard, C. T. et al. Evolution of the global phosphorus cycle. Nature 541, 386–389 (2017).

    Article  Google Scholar 

  84. Konhauser, K. O., Lalonde, S. V., Amskold, L. & Holland, H. D. Was there really an Archean phosphate crisis? Science 315, 1234–1234 (2007).

    Article  Google Scholar 

  85. Tosca, N. J., Jiang, C. Z., Rasmussen, B. & Muhling, J. Products of the iron cycle on the early Earth. Free Radic. Biol. Med. 140, 138–153 (2019).

    Article  Google Scholar 

  86. Johnson, B. R. et al. Phosphorus burial in ferruginous SiO2-rich Mesoproterozoic sediments. Geology 48, 92–96 (2020).

    Article  Google Scholar 

  87. Derry, L. A. Causes and consequences of mid-Proterozoic anoxia. Geophys. Res. Lett. 42, 8538–8546 (2015).

    Article  Google Scholar 

  88. Brady, M. P., Tostevin, R. & Tosca, N. J. Marine phosphate availability and the chemical origins of life on Earth. Nat. Commun. 13, 5162 (2022).

    Article  Google Scholar 

  89. Ingalls, M., Grotzinger, J. P., Present, T., Rasmussen, B. & Fischer, W. W. Carbonate-associated phosphate (CAP) indicates elevated phosphate availability in Neoarchean shallow marine environments. Geophys. Res. Lett. 49, e2022GL098100 (2022).

    Article  Google Scholar 

  90. Zhao, M., Zhang, S., Tarhan, L. G., Reinhard, C. T. & Planavsky, N. The role of calcium in regulating marine phosphorus burial and atmospheric oxygenation. Nat. Commun. 11, 2232 (2020).

    Article  Google Scholar 

  91. Crockford, P. & Halevy, I. Questioning the paradigm of a phosphate‐limited Archean biosphere. Geophys. Res. Lett. 49, e2022GL099818 (2022).

    Article  Google Scholar 

  92. Toner, J. D. & Catling, D. C. A carbonate-rich lake solution to the phosphate problem of the origin of life. Proc. Natl Acad. Sci. USA 117, 883–888 (2020).

    Article  Google Scholar 

  93. Burcar, B. et al. Darwin’s warm little pond: a one‐pot reaction for prebiotic phosphorylation and the mobilization of phosphate from minerals in a urea‐based solvent. Angew. Chem. Int. Ed. 55, 13249–13253 (2016).

    Article  Google Scholar 

  94. Damer, B. & Deamer, D. The hot spring hypothesis for an origin of life. Astrobiology 20, 429–452 (2020).

    Article  Google Scholar 

  95. Jordan, S. F. et al. Promotion of protocell self-assembly from mixed amphiphiles at the origin of life. Nat. Ecol. Evol. 3, 1705–1714 (2019).

    Article  Google Scholar 

  96. Herschy, B. et al. An origin-of-life reactor to simulate alkaline hydrothermal vents. J. Mol. Evol. 79, 213–227 (2014).

    Article  Google Scholar 

  97. Kim, H. J. et al. Evaporite borate‐containing mineral ensembles make phosphate available and regiospecifically phosphorylate ribonucleosides: borate as a multifaceted problem solver in prebiotic chemistry. Angew. Chem. Int. Ed. 128, 16048–16052 (2016).

    Article  Google Scholar 

  98. Deal, A. M., Rapf, R. J. & Vaida, V. Water–air interfaces as environments to address the water paradox in prebiotic chemistry: a physical chemistry perspective. J. Phys. Chem. A 125, 4929–4942 (2021).

    Article  Google Scholar 

  99. Cornell, C. E. et al. Prebiotic amino acids bind to and stabilize prebiotic fatty acid membranes. Proc. Natl Acad. Sci. USA 116, 17239–17244 (2019).

    Article  Google Scholar 

  100. Krijt, S. et al. Chemical habitability: supply and retention of life’s essential elements during planet formation. Preprint at https://arxiv.org/abs/2203.10056 (2022).

  101. Kipp, M. A. & Stueken, E. E. Biomass recycling and Earth’s early phosphorus cycle. Sci. Adv. 3, eaao4795 (2017).

    Article  Google Scholar 

  102. Hudek, L., Premachandra, D., Webster, W. & Bräu, L. Role of phosphate transport system component PstB1 in phosphate internalization by Nostoc punctiforme. Appl. Environ. Microbiol. 82, 6344–6356 (2016).

    Article  Google Scholar 

  103. Lis, H., Weiner, T., Pitt, F. D., Keren, N. & Angert, A. Phosphate uptake by cyanobacteria is associated with kinetic fractionation of phosphate oxygen isotopes. ACS Earth Space Chem. 3, 233–239 (2018).

    Article  Google Scholar 

  104. Alori, E. T., Glick, B. R. & Babalola, O. O. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front. Microbiol. 8, 971 (2017).

    Article  Google Scholar 

  105. Blake, R. E., Chang, S. J. & Lepland, A. Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean. Nature 464, 1029–1032 (2010).

    Article  Google Scholar 

  106. Jusino-Maldonado, M. et al. A global network model of abiotic phosphorus cycling on Earth through time. Sci. Rep. 12, 9348 (2022).

    Article  Google Scholar 

  107. Anderson, L. A. & Sarmiento, J. L. Global ocean phosphate and oxygen simulations. Glob. Biogeochem. Cycles 9, 621–636 (1995).

    Article  Google Scholar 

  108. Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    Article  Google Scholar 

  109. Kadoya, S., Catling, D. C., Nicklas, R. W., Puchtel, I. S. & Anbar, A. D. Mantle data imply a decline of oxidizable volcanic gases could have triggered the Great Oxidation. Nat. Commun. 11, 2774 (2020).

    Article  Google Scholar 

  110. Krissansen-Totton, J. & Catling, D. C. Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model. Nat. Commun. 8, 15423 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

C.R.W. acknowledges the NERC and UKRI for support through a NERC DTP studentship, grant number NE/L002507/1. S.E. and J.D.C. acknowledge support from the US DOE, grant number DE-SC0020156. C.R.W. acknowledges funding from the Leverhulme Centre for Life in the Universe and Institute for Life and Planets in the Universe (grant title: ‘Did cosmic dust fertilize prebiotic chemistry?’). Funding for research on phosphorus redox cycling was generously provided to J.D.C. by the EBI–Shell Research Program. S.E. was supported by the EBI–Shell Directors’ fellowship. C.R. acknowledges support from the NASA Interdisciplinary Consortia for Astrobiology Research (ICAR) and the NASA Exobiology Program. J.H. acknowledges support from the Strategic Priority Research Program of Chinese Academy of Sciences (XDB 41000000), National Key R&D Program of China (2021YFA0718200), CAS Hundred-Talents Program and CIFAR Azrieli Global Scholarship. M.A.P. was supported by the NASA Exobiology Program (80NSSCC18K1288 and 80NSSC22K0509).

Author information

Authors and Affiliations

Authors

Contributions

C.R.W., J.H., S.E., J.D.C. and M.A.P. planned and wrote the paper. Data analysis was performed by all authors, who also edited the text.

Corresponding authors

Correspondence to Jihua Hao or Matthew A. Pasek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Miquela Ingalls, Ziwei Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Rebecca Neely, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walton, C.R., Ewens, S., Coates, J.D. et al. Phosphorus availability on the early Earth and the impacts of life. Nat. Geosci. 16, 399–409 (2023). https://doi.org/10.1038/s41561-023-01167-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-023-01167-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing