Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Increasing complexity in magmatic architecture of volcanoes along a waning hotspot

Abstract

Mantle plumes are key drivers of volcanism within tectonic plates. Variations in plume flux and the resulting magma flux are expected within a plume’s lifetime, but their impact on volcanic architecture and eruption products and styles remains poorly constrained. Here we combine mineralogy, petrology and geochronology of Earth’s longest continental hotspot chain to assess the effects of waning plume strength on magma flux and pre-eruptive magma transport and storage. We focus on Cenozoic age-progressive volcanoes across eastern Australia, divided by a change in plate motion and voluminous volcanism. Northern volcanoes are older and ‘long-lived’ (3.5–7 million years (Ma)) and erupted high volumes (>800 km³) of bimodal magmas (basalts and rhyolites), producing homogeneous, crystal-poor basalts (~3 vol% phenocrysts). Southern volcanoes are smaller (<300 km³), ‘short-lived’ (≤1.5 Ma) and split into two parallel tracks that erupted more evolved and texturally complex magmas (~12 vol% phenocrysts, internally zoned). These findings imply waning magma flux leads to increasingly complex feeder systems that enhance magma storage and differentiation. Similar trends in hotspot tracks globally suggest that plume and magma flux play a crucial role in the evolution of intraplate volcanoes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map of east Australia with locations of Cenozoic age-progressive shield volcanoes.
Fig. 2: KDEs of 40Ar/39Ar plateau ages, lava compositions and textures from northern (blue) and southern (red) shield volcanoes of the east Australia hotspot track.
Fig. 3: Mineral compositions from northern (blue) and southern (red) volcanoes of the east Australia hotspot track.
Fig. 4: Phenocryst textures and compositions in lavas from the east Australia hotspot track with simplified magma plumbing architecture.
Fig. 5: Schematic model of volcano distribution and plumbing-system architecture across the eastern Australia continental hotspot track.

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are presented in the main figures and supplementary figures. All data are available as electronic supplementary files in .xlsx format (Supplementary Files 1 to 4). Electronic supplementary files are available in the Figshare repository at https://doi.org/10.6084/m9.figshare.21856362.

References

  1. Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 42–43 (1971).

    Article  Google Scholar 

  2. Devey, C. W. et al. Giving birth to hotspot volcanoes: distribution and composition of young seamounts from the seafloor near Tahiti and Pitcairn islands. Geology 31, 395–398 (2003).

    Article  Google Scholar 

  3. Hofmann, C. et al. Timing of the Ethiopian flood basalt event and implications for plume birth and global change. Nature 389, 838–841 (1997).

    Article  Google Scholar 

  4. Harrison, L. N., Weis, D. & Garcia, M. O. The link between Hawaiian mantle plume composition, magmatic flux, and deep mantle geodynamics. Earth Planet. Sci. Lett. 463, 298–309 (2017).

    Article  Google Scholar 

  5. Davies, G. F. Temporal variation of the Hawaiian plume flux. Earth Planet. Sci. Lett. 113, 277–286 (1992).

    Article  Google Scholar 

  6. Poland, M. P., Miklius, A. & Montgomery-Brown, E.K. in Characteristics of Hawaiian Volcanoes, USGS Special Publication. Report No. 18015 (US Geological Survey, 2014).

  7. Jones, I. & Verdel, C. Basalt distribution and volume estimates of Cenozoic volcanism in the Bowen Basin region of eastern Australia: implications for a waning mantle plume. Aust. J. Earth Sci. 62, 255–263 (2015).

    Article  Google Scholar 

  8. Ball, P. W., Czarnota, K., White, N. J., Klöcking, M. & Davies, D. R. Thermal structure of eastern Australia’s upper mantle and its relationship to Cenozoic volcanic activity and dynamic topography. Geochem. Geophys. Geosyst. 22, e2021GC009717 (2021).

    Article  Google Scholar 

  9. Johnson, R.W. Intraplate Volcanism: In Eastern Australia and New Zealand (Cambridge University Press, 1989).

  10. Rohde, J. K., van den Bogaard, P., Hoernle, K., Hauff, F. & Werner, R. Evidence for an age progression along the Tristan–Gough volcanic track from new 40Ar/39Ar ages on phenocryst phases. Tectonophysics 604, 60–71 (2013).

    Article  Google Scholar 

  11. Geist, D. J., Bergantz, G. & Chadwick, W. W. in Galapagos: A Natural Laboratory for the Earth Sciences (eds Harpp, K.S. et al.) 55–70 (American Geophysical Union, 2014).

  12. Harpp, K. S. & Geist, D. J. The evolution of Galápagos volcanoes: an alternative perspective. Front. Earth Sci. 6, 50 (2018).

    Article  Google Scholar 

  13. Stock, M. J. et al. Cryptic evolved melts beneath monotonous basaltic shield volcanoes in the Galápagos Archipelago. Nat. Commun. 11, 3767 (2020).

    Article  Google Scholar 

  14. Gleeson, M. L. M., Gibson, S. A. & Stock, M. J. Upper mantle mush zones beneath low melt flux ocean island volcanoes: insights from Isla Floreana, Galápagos. J. Petrol. 61, egaa094 (2021).

    Article  Google Scholar 

  15. Clague, D. A. Hawaiian xenolith populations, magma supply rates, and development of magma chambers. Bull. Volcanol. 49, 577–587 (1987).

    Article  Google Scholar 

  16. Clague, D. A. & Dixon, J. E. Extrinsic controls on the evolution of Hawaiian ocean island volcanoes. Geochem. Geophys. Geosyst. 1, n/a–n/a (2000).

    Article  Google Scholar 

  17. Norman, M. D. & Garcia, M. O. Primitive magmas and source characteristics of the Hawaiian plume: petrology and geochemistry of shield picrites. Earth Planet. Sci. Lett. 168, 27–44 (1999).

    Article  Google Scholar 

  18. Wellman, P. & McDougall, I. Potassium–argon ages on the Cainozoic volcanic rocks of New South Wales. J. Geol. Soc. Aust. 21, 247–272 (1974).

    Article  Google Scholar 

  19. Wellman, P. & McDougall, I. Cainozoic igneous activity in eastern australia. Tectonophysics 23, 49–65 (1974).

    Article  Google Scholar 

  20. Fishwick, S., Heintz, M., Kennett, B., Reading, A. & Yoshizawa, K. Steps in lithospheric thickness within eastern Australia, evidence from surface wave tomography. Tectonics 27 (2008).

  21. Davies, D. R., Rawlinson, N., Iaffaldano, G. & Campbell, I. H. Lithospheric controls on magma composition along Earth’s longest continental hotspot track. Nature 525, 511–514 (2015).

    Article  Google Scholar 

  22. Jones, I., Ubide, T., Crossingham, T., Wilding, B. & Verdel, C. Evidence of a common source component for east Australian Cenozoic mafic magmatism. Lithos 354–355, 105254 (2020).

    Article  Google Scholar 

  23. Shea, J. J., Ezad, I. S., Foley, S. F. & Lanati, A. W. The Eastern Australian Volcanic Province, its primitive melts, constraints on melt sources and the influence of mantle metasomatism. Earth Sci. Rev. 233, 104168 (2022).

    Article  Google Scholar 

  24. Knesel, K. M., Cohen, B. E., Vasconcelos, P. M. & Thiede, D. S. Rapid change in drift of the Australian plate records collision with Ontong Java plateau. Nature 454, 754–757 (2008).

    Article  Google Scholar 

  25. Jones, I., Verdel, C., Crossingham, T. & Vasconcelos, P. Animated reconstructions of the Late Cretaceous to Cenozoic northward migration of Australia, and implications for the generation of east Australian mafic magmatism. Geosphere 13, 460–481 (2017).

    Article  Google Scholar 

  26. Ewart, A. Aspects of the mineralogy and chemistry of the intermediate-silicic Cainozoic volcanic rocks of eastern Australia. Aust. J. Earth Sci. 32, 383–413 (1985).

    Article  Google Scholar 

  27. Ewart, A., Chappell, B. W. & Menzies, M. A. An overview of the geochemical and isotopic characteristics of the eastern Australian Cainozoic volcanic provinces. J. Petrol. 1, 225–273 (1988).

    Article  Google Scholar 

  28. Cohen, B.E. High Resolution 40Ar/39Ar Geochronology of Intraplate Volcanism in Eastern Australia. PhD thesis, Univ. of Queensland (2007).

  29. Crossingham, T. J., Ubide, T., Vasconcelos, P. M., Knesel, K. M. & Mallmann, G. Temporal constraints on magma generation and differentiation in a continental volcano: Buckland, eastern Australia. Lithos 302, 341–358 (2018).

    Article  Google Scholar 

  30. Tapu, A. T., Ubide, T. & Vasconcelos, P. M. Plumbing system architecture of late-stage hotspot volcanoes in eastern Australia. J. Petrol. 63, 1–24 (2022).

    Article  Google Scholar 

  31. Crossingham, T., Ubide, T., Vasconcelos, P. & Mallmann, G. Parallel plumbing systems feeding a pair of coeval volcanoes in eastern Australia. J. Petrol. 59, 1035–1066 (2018).

    Article  Google Scholar 

  32. Jorgenson, C., Higgins, O., Petrelli, M., Bégué, F. & Caricchi, L. A machine learning-based approach to clinopyroxene thermobarometry: model optimization and distribution for use in Earth sciences. J. Geophys. Res. B: Solid Earth 127, e2021JB022904 (2022).

    Google Scholar 

  33. Collins, C. D. N., Drummond, B. J. & Nicoll, M. G. in Evolution and Dynamics of the Australian Plate (eds Hillis, R. R. and Müller, R. D.) 121–128 (Geological Society of America, 2003).

  34. Walker, G.P. in A Natural History of the Hawaiian Islands (ed Kay, A.) 53–85 (Univ. of Hawaii Press, 1990).

  35. Ballmer, M. D., Ito, G., van Hunen, J. & Tackley, P. J. Spatial and temporal variability in Hawaiian hotspot volcanism induced by small-scale convection. Nat. Geosci. 4, 457–460 (2011).

    Article  Google Scholar 

  36. Ribe, N. M. Dynamical geochemistry of the Hawaiian plume. Earth Planet. Sci. Lett. 88, 37–46 (1988).

    Article  Google Scholar 

  37. Saltus, R. Upper-crustal structure beneath the Columbia River Basalt Group, Washington: gravity interpretation controlled by borehole and seismic studies. Geol. Soc. Am. Bull. 105, 1247–1259 (1993).

    Article  Google Scholar 

  38. Kincaid, C., Druken, K., Griffiths, R. & Stegman, D. Bifurcation of the Yellowstone plume driven by subduction-induced mantle flow. Nat. Geosci. 6, 395–399 (2013).

    Article  Google Scholar 

  39. Draper, D. S. Late Cenozoic bimodal magmatism in the northern Basin and Range Province of southeastern Oregon. J. Volcanol. Geotherm. Res. 47, 299–328 (1991).

    Article  Google Scholar 

  40. Lee, C.-T. A. & Bachmann, O. How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics. Earth Planet. Sci. Lett. 393, 266–274 (2014).

    Article  Google Scholar 

  41. Bachmann, O. & Bergantz, G. The magma reservoirs that feed supereruptions. Elements 4, 17–21 (2008).

    Article  Google Scholar 

  42. Crossingham, T. J., Vasconcelos, P. M., Cunningham, T. & Knesel, K. M. 40Ar/39Ar geochronology and volume estimates of the Tasmantid seamounts: support for a change in the motion of the Australian plate. J. Volcanol. Geotherm. Res. 343, 95–108 (2017).

    Article  Google Scholar 

  43. Seton, M. et al. Magma production along the Lord Howe Seamount Chain, northern Zealandia. Geol. Mag. 156, 1605–1617 (2019).

    Article  Google Scholar 

  44. Rogers, A. et al. The isotopic origin of Lord Howe Island reveals secondary mantle plume twinning in the Tasman Sea. Chem. Geol. 622, 121374 (2023).

    Article  Google Scholar 

  45. King, S. D. & Adam, C. Hotspot swells revisited. Phys. Earth Planet. Inter. 235, 66–83 (2014).

    Article  Google Scholar 

  46. Koppers, A. A. P. et al. Mantle plumes and their role in Earth processes. Nat. Rev. Earth Environ. 2, 382–401 (2021).

    Article  Google Scholar 

  47. Naumann, T., Geist, D. & Kurz, M. Petrology and geochemistry of Volcán Cerro Azul: petrologic diversity among the western Galápagos volcanoes. J. Petrol. 43, 859–883 (2002).

    Article  Google Scholar 

  48. Gleeson, M. L. M., Gibson, S. A. & Stock, M. J. Constraints on the behaviour and content of volatiles in Galápagos magmas from melt inclusions and nominally anhydrous minerals. Geochim. Cosmochim. Acta 319, 168–190 (2022).

    Article  Google Scholar 

  49. Rawlinson, N., Davies, D. R. & Pilia, S. The mechanisms underpinning Cenozoic intraplate volcanism in eastern Australia: insights from seismic tomography and geodynamic modeling. Geophys. Res. Lett. 44, 9681–9690 (2017).

    Article  Google Scholar 

  50. Sutherland, F., Cohen, B. E. & Duggan, M. B. Miocene central volcanoes, NW New South Wales: genesis over a Lithospheric cavity (?). Proc. Linn. Soc. N. S. W. 141 (2019).

  51. Duvernay, T., Davies, D. R., Mathews, C. R., Gibson, A. H. & Kramer, S. C. Continental magmatism: The surface manifestation of dynamic interactions between cratonic lithosphere mantle plumes and edge‐driven convection. Geochem. Geophys. Geosyst. 23, e2022GC010363 (2022).

    Article  Google Scholar 

  52. Li, M., Zhong, S. & Olson, P. Linking lowermost mantle structure, core–mantle boundary heat flux and mantle plume formation. Phys. Earth Planet. Inter. 277, 10–29 (2018).

    Article  Google Scholar 

  53. Sutherland, F. L. in Evolution and Dynamics of the Australian Plate (Hillis, R. R. & Müller, R. D.) 203–221 (Geological Society of America, 2003).

  54. Hoernle, K. et al. How and when plume zonation appeared during the 132 Myr evolution of the Tristan Hotspot. Nat. Commun. 6, 7799 (2015).

    Article  Google Scholar 

  55. Le Roex, A. P. Geochemistry, mineralogy and magmatic evolution of the basaltic and trachytic lavas from Gough Island, South Atlantic. J. Petrol. 26, 149–186 (1985).

    Article  Google Scholar 

  56. de Gouveia, S. V. et al. Evidence of hotspot paths below Arabia and the Horn of Africa and consequences on the Red Sea opening. Earth Planet. Sci. Lett. 487, 210–220 (2018).

    Article  Google Scholar 

  57. Chang, S. J., Kendall, E., Davaille, A. & Ferreira, A. M. G. The evolution of mantle plumes in East Africa. J. Geophys. Res.: Solid Earth 125, e2020JB019929 (2020).

    Article  Google Scholar 

  58. Le Bas, M. & Streckeisen, A. L. The IUGS systematics of igneous rocks. J. Geol. Soc. 148, 825–833 (1991).

    Article  Google Scholar 

  59. Sun, S.-S. & McDonough, W. F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Lond. Special Publ. 42, 313–345 (1989).

    Article  Google Scholar 

  60. Fleck, R. J., Sutter, J. F. & Elliot, D. H. Interpretation of discordant 40Ar/39Ar age-spectra of mesozoic tholeiites from Antarctica. Geochim. Cosmochim. Acta 41, 15–32 (1977).

    Article  Google Scholar 

  61. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  Google Scholar 

  62. Middlemost, E. A. K. The Canobolas complex, N.S.W., an alkaline shield volcano. J. Geol. Soc. Aust. 28, 33–49 (1981).

    Article  Google Scholar 

  63. Ewart, A., Chappell, B. W. & Le Maitre, R. W. Aspects of the mineralogy and chemistry of the intermediate-silicic Cainozoic volcanic rocks of eastern Australia. Part 1: introduction and geochemistry. Aust. J. Earth Sci. 32, 359–382 (1985).

    Article  Google Scholar 

  64. Ewart, A. Petrogenesis of the Tertiary anorogenic volcanic series of southern Queensland, Australia, in the light of trace element geochemistry and O, Sr and Pb isotopes. J. Petrol. 23, 344–382 (1982).

    Article  Google Scholar 

  65. Ewart, A., Baxter, K. & Ross, J. A. The petrology and petrogenesis of the Tertiary anorogenic mafic lavas of southern and central Queensland, Australia—possible implications for crustal thickening. Contrib. Mineral. Petrol. 75, 129–152 (1980).

    Article  Google Scholar 

  66. Stolz, A. J. The role of fractional crystallization in the evolution of the Nandewar Volcano, north-eastern New South Wales, Australia. J. Petrol. 26, 1002–1026 (1985).

    Article  Google Scholar 

  67. Skae A. The Petrology of the Buckland Volcanic Province, Central Queensland, Australia (Univ. of Oxford, 1998).

  68. Putirka, K. D. Thermometers and barometers for volcanic systems. Rev. Mineral. Geochem. 69, 61–120 (2008).

    Article  Google Scholar 

  69. Putirka, K., Johnson, M., Kinzler, R., Longhi, J. & Walker, D. Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contrib. Mineral. Petrol. 123, 92–108 (1996).

    Article  Google Scholar 

  70. Mollo, S., Blundy, J., Iezzi, G., Scarlato, P. & Langone, A. The partitioning of trace elements between clinopyroxene and trachybasaltic melt during rapid cooling and crystal growth. Contrib. Mineral. Petrol. 166, 1633–1654 (2013).

    Article  Google Scholar 

  71. Putirka, K. D., Mikaelian, H., Ryerson, F. & Shaw, H. New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. Am. Mineral. 88, 1542–1554 (2003).

    Article  Google Scholar 

  72. Scott, D. W. On optimal and data-based histograms. Biometrika 66, 605–610 (1979).

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to the early work of A. Ewart (including his thin section collection), P. Wellman and I. McDougall and thank T. Crossingham, I. Jones and B. Cohen for sharing the thin section collection on East Australia shield volcanoes (UQ AGES). We thank Queensland and New South Wales National Parks and Wildlife Services for sampling permits SL101471 and WITK18783318 and the staff at the National Parks and Wildlife Services for their assistance with fieldwork. We are grateful for insightful discussions with F. Lin Sutherland and A. Marzoli, as well as T. Crossingham, J. Ward and R. Magee who also assisted with electron microscopy. We thank A. MacDonald for her assistance with the R script for thermobarometric calculations and Gang Xia (Rock Lab, SEES, UQ) for his assistance with thin section preparation. We acknowledge the facilities and staff of the Australian Microscopy and Microanalysis Research Facility at the Centre for Microscopy and Microanalysis at the University of Queensland. We highly appreciate constructive comments from P. Ball, C. Class, K. Harpp which helped us improve the original version of the paper. This work was supported by the University of Queensland Argon Laboratory (UQ AGES, P.M.V.) and a Foundation Research Excellence Award from the University of Queensland (UQ-FREA RM2019001828, T.U.). Construction of UQ AGES was partially funded by Australian Research Council Equipment grant A39531815. A.T.T. acknowledges the support from the Australian Government Research Training Program (UQRTP; PhD scholarship).

Author information

Authors and Affiliations

Authors

Contributions

A.T.T., T.U. and P.M.V. conceptualized the project and devised the methodology. A.T.T. carried out the investigation and data visualization. The original draft was written by A.T.T. and reviewed and edited by T.U. and P.M.V.

Corresponding author

Correspondence to A. T. Tapu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Karen Harpp, Patrick Ball, Cornelia Class and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editors: Stefan Lachowycz and Rebecca Neely, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1: Eruption rate overview. Supplementary Fig. 2: Representative thin section scans and overview of porphyricity measurements. Supplementary Fig. 3: Overview of bulk rock major element variations in Hawaii, Columbia River and Tristan–Gough plume tracks. Supplementary Fig. 4: Common source component evidence. Supplementary Fig. 5: Petrographic and geochemical variations in seamounts. Supplementary Fig. 6: 40Ar/39Ar ages from Tweed–Main Range complex. Supplementary Fig. 7: Clinopyroxene thermobarometry comparison.

Supplementary Data 1

Porphyricity and phenocryst length summary.

Supplementary Data 2

In situ mineral chemistry, standard analyses and thermobarometry.

Supplementary Data 3

Whole rock and groundmass geochemistry.

Supplementary Data 4

Geochemistry of Columbia River Basalt, Walvis–Gough track and Hawaiian hotspots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tapu, A.T., Ubide, T. & Vasconcelos, P.M. Increasing complexity in magmatic architecture of volcanoes along a waning hotspot. Nat. Geosci. 16, 371–379 (2023). https://doi.org/10.1038/s41561-023-01156-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-023-01156-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing