Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Diminishing lake area across the northern permafrost zone

Abstract

Rapid warming in the Arctic is driving permafrost thaw and lake area changes, with implications for wildlife, subsistence living and climate feedbacks. Models suggest that initial permafrost thaw will result in increased lake area, with continued warming and advanced thaw eventually leading to decreased lake area after ~60–150 years. Here, we review data from 139 sites in 57 publications tracking the direction of lake area change. In the discontinuous permafrost zone, the majority of sites exhibit decreasing lake area, whereas in the continuous zone, the number of sites with increasing lake area is similar to the number with decreasing lake area. These trends suggest that lake drainage due to permafrost thaw is occurring sooner than anticipated. Across the northern permafrost zone, lake area trends are unrelated to precipitation trends and, in most regions, lake area change is heterogeneous. Together, these results indicate that the primary driver of lake area change is permafrost thaw, rather than changes in precipitation and/or evapotranspiration. The observed emergence of lake area trends projected to occur no earlier than the mid-twenty-first century indicates that current models do not adequately represent the processes driving permafrost thaw and associated lake drainage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observations of net lake area change binned by permafrost zone100 and mapped by geographic location.
Fig. 2: Observations of net lake area change binned by annual precipitation trend and permafrost zone.
Fig. 3: Observations of lake area trends binned by ground-ice content.

Similar content being viewed by others

Data availability

This study relies on previously published data. A list of all previously published studies used in this analysis is available in the Supplementary Information.

The climate trends were generated using Copernicus Climate Change Service Information (2022) ERA5-Land hourly data (2 m temperature, snowfall, total precipitation; https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview). Permafrost extent, ground-ice content and overburden thickness data was from the Circum-Arctic Map of Permafrost and Ground-Ice Conditions, Version 2 (https://doi.org/10.7265/skbg-kf16). Lake density was from the Boreal–Arctic Wetland and Lake Dataset (https://arcticdata.io/catalog/view/doi:10.18739/A2C824F9X). Thermokarst lake and thermokarst wetland coverage was from the Arctic Circumpolar Distribution and Soil Carbon of Thermokarst Landscapes dataset (https://doi.org/10.3334/ORNLDAAC/1332). Source data are provided with this paper.

Code availability

R code used to perform analyses is available on GitHub (https://github.com/webb-e/Lake_area_change).

References

  1. Box, J. E. et al. Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 14, 045010 (2019).

    Article  Google Scholar 

  2. Ballinger, T. J. et al. Arctic Report Card 2020: Surface Air Temperature (U.S. National Oceanic and Atmospheric Administration, 2020); https://doi.org/10.25923/gcw8-2z06

  3. Romanovsky, V. et al. in Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 65–102 (Arctic Monitoring and Assessment Programme, 2017).

  4. Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and influence on tundra hydrology. Nat. Geosci. 9, 312–318 (2016).

    Article  Google Scholar 

  5. Runge, A., Nitze, I. & Grosse, G. Remote sensing annual dynamics of rapid permafrost thaw disturbances with LandTrendr. Remote Sens. Environ. 268, 112752 (2022).

    Article  Google Scholar 

  6. Farquharson, L. M. et al. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophys. Res. Lett. 46, 6681–6689 (2019).

    Article  Google Scholar 

  7. Mamet, S. D., Chun, K. P., Kershaw, G. G. L. & Loranty, M. M. & Peter Kershaw, G. Recent increases in permafrost thaw rates and areal loss of palsas in the western Northwest Territories, Canada. Permafr. Periglac. Process. 28, 619–633 (2017).

    Article  Google Scholar 

  8. Vasiliev, A. A. et al. Permafrost degradation in the western Russian Arctic. Environ. Res. Lett. 15, 045001 (2020).

    Article  Google Scholar 

  9. Grosse, G., Jones, B. & Arp, C. in Treatise on Geomorphology (eds Shroder, J. et al.) 325–353 (Academic Press, 2013).

  10. Osterkamp, T. E. et al. Observations of thermokarst and its impact on boreal forests in Alaska, U.S.A. Arct. Antarct. Alp. Res. 32, 303–315 (2000).

    Article  Google Scholar 

  11. Czudek, T. & Demek, J. Thermokarst in Siberia and its influence relief on the development of lowland relief. Quat. Res. 1, 103–120 (1970).

    Article  Google Scholar 

  12. Burn, C. R. Thermokarst lakes. Can. Geogr. 36, 81–85 (1992).

    Article  Google Scholar 

  13. Bosikov, N. P. Wetness variability and dynamics of thermokarst processes in central Yakutia. In Proc. Permafrost - Seventh International Conference (eds Lewkowicz, A. G. & Allard, M.) 71–74 (Centre d'études nordiques, Université Laval, 1998).

  14. Yoshikawa, K. & Hinzman, L. D. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafr. Periglac. Process. 14, 151–160 (2003).

    Article  Google Scholar 

  15. Mackay, J. R. Catastrophic lake drainage, Tuktoyaktuk Peninsula area, District of Mackenzie. Curr. Res. D. 88, 83–90 (1988).

    Google Scholar 

  16. Jones, B. M. & Arp, C. D. Observing a catastrophic thermokarst lake drainage in northern Alaska. Permafr. Periglac. Process. 26, 119–128 (2015).

    Article  Google Scholar 

  17. Marsh, P. & Neumann, N. N. Processes controlling the rapid drainage of two ice-rich permafrost-dammed lakes in NW Canada. Hydrol. Process. 15, 3433–3446 (2001).

    Article  Google Scholar 

  18. Billings, W. D. & Peterson, K. M. Vegetational change and ice-wedge polygons through the thaw-lake cycle in Arctic Alaska. Arct. Alp. Res. 12, 413–432 (1980).

    Article  Google Scholar 

  19. Chen, M., Rowland, J. C., Wilson, C. J., Altmann, G. L. & Brumby, S. P. Temporal and spatial pattern of thermokarst lake area changes at Yukon Flats, Alaska. Hydrol. Process. 28, 837–852 (2014).

    Article  Google Scholar 

  20. Haynes, T. B., Rosenberger, A. E., Lindberg, M. S., Whitman, M. & Schmutz, J. A. Patterns of lake occupancy by fish indicate different adaptations to life in a harsh Arctic environment. Freshw. Biol. 59, 1884–1896 (2014).

    Article  Google Scholar 

  21. Roach, J. K. & Griffith, B. Climate-induced lake drying causes heterogeneous reductions in waterfowl species richness. Landsc. Ecol. 30, 1005–1022 (2015).

    Article  Google Scholar 

  22. Martin, D. et al. Drinking water and potential threats to human health in Nunavik: adaptation strategies under climate change conditions. Arctic 60, 195–202 (2007).

    Google Scholar 

  23. Alessa, L. et al. The Arctic water resource vulnerability index: an integrated assessment tool for community resilience and vulnerability with respect to freshwater. Environ. Manag. 42, 523–541 (2008).

    Article  Google Scholar 

  24. Berkes, F. & Jolly, D. Adapting to climate change: social-ecological resilience in a Canadian western Arctic community. Ecol. Soc. 5, 18 (2002).

    Google Scholar 

  25. Turner, C. K. & Lantz, T. C. Springtime in the delta: the socio-cultural importance of muskrats to Gwich’in and Inuvialuit trappers through periods of ecological and socioeconomic change. Hum. Ecol. 46, 601–611 (2018).

    Article  Google Scholar 

  26. Jones, B. M. et al. Arctic lake physical processes and regimes with implications for winter water availability and management in the National Petroleum Reserve Alaska. Environ. Manag. 43, 1071–1084 (2009).

    Article  Google Scholar 

  27. Webb, E. E., Loranty, M. M. & Lichstein, J. W. Surface water, vegetation, and fire as drivers of the terrestrial Arctic-boreal albedo feedback. Environ. Res. Lett. 16, 084046 (2021).

    Article  Google Scholar 

  28. Walter Anthony, K. et al. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nat. Geosci. 9, 679–682 (2016).

    Article  Google Scholar 

  29. Walter Anthony, K. et al. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511, 452–456 (2014).

    Article  Google Scholar 

  30. Walter Anthony, K. et al. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9, 3262 (2018).

    Article  Google Scholar 

  31. Smith, L. C., Sheng, Y., MacDonald, G. M. & Hinzman, L. D. Disappearing Arctic lakes. Science 308, 1429 (2005).

    Article  Google Scholar 

  32. van Huissteden, J. et al. Methane emissions from permafrost thaw lakes limited by lake drainage. Nat. Clim. Change 1, 119–123 (2011).

    Article  Google Scholar 

  33. Schneider Von Deimling, T. et al. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity. Biogeosciences 12, 3469–3488 (2015).

    Article  Google Scholar 

  34. Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    Article  Google Scholar 

  35. Roach, J., Griffith, B., Verbyla, D. & Jones, J. Mechanisms influencing changes in lake area in Alaskan boreal forest. Glob. Change Biol. 17, 2567–2583 (2011).

    Article  Google Scholar 

  36. Riordan, B., Verbyla, D. & McGuire, A. D. Shrinking ponds in subarctic Alaska based on 1950–2002 remotely sensed images. J. Geophys. Res. Biogeosci. 111, G04002 (2006).

    Article  Google Scholar 

  37. Kirk, R. M., Komar, P. D., Allan, J. C. & Stephenson, W. J. Shoreline erosion on Lake Hawea, New Zealand, caused by high lake levels and storm-wave runup. J. Coast. Res. 16, 346–356 (2000).

    Google Scholar 

  38. Jones, B. M. et al. Increase in beaver dams controls surface water and thermokarst dynamics in an Arctic tundra region, Baldwin Peninsula, northwestern Alaska. Environ. Res. Lett. 15, 075005 (2020).

    Article  Google Scholar 

  39. Ulrich, M. et al. Differences in behavior and distribution of permafrost-related lakes in central Yakutia and their response to climatic drivers. Water Resour. Res. 53, 1167–1188 (2017).

    Article  Google Scholar 

  40. Fedorov, A. N. et al. Estimating the water balance of a thermokarst lake in the middle of the Lena River basin, eastern Siberia. Ecohydrology 7, 188–196 (2014).

    Article  Google Scholar 

  41. Bouchard, F. et al. Vulnerability of shallow subarctic lakes to evaporate and desiccate when snowmelt runoff is low. Geophys. Res. Lett. 40, 6112–6117 (2013).

    Article  Google Scholar 

  42. Andresen, C. G. & Lougheed, V. L. Disappearing Arctic tundra ponds: fine-scale analysis of surface hydrology in drained thaw lake basins over a 65 year period (1948–2013). J. Geophys. Res. Biogeosci. 120, 466–479 (2015).

    Article  Google Scholar 

  43. Finger Higgens, R. A. et al. Changing lake dynamics indicate a drier arctic in western Greenland. J. Geophys. Res. Biogeosci. 124, 870–883 (2019).

    Article  Google Scholar 

  44. Labrecque, S., Lacelle, D., Duguay, C. R., Lauriol, B. & Hawkings, J. Contemporary (1951–2001) evolution of lakes in the Old Crow basin, northern Yukon, Canada: remote sensing, numerical modeling, and stable isotope analysis. Arctic 62, 225–238 (2009).

    Article  Google Scholar 

  45. Veremeeva, A., Nitze, I., Günther, F., Grosse, G. & Rivkina, E. Geomorphological and climatic drivers of thermokarst lake area increase trend (1999–2018) in the Kolyma Lowland Yedoma region, north‐eastern Siberia. Remote. Sens. 13, 178 (2021).

    Article  Google Scholar 

  46. Cheţan, M. A. et al. 35 years of vegetation and lake dynamics in the Pechora catchment, Russian European Arctic. Remote Sens. 12, 1863 (2020).

    Article  Google Scholar 

  47. Rawlins, M. A. et al. Analysis of the Arctic system for freshwater cycle intensification: observations and expectations. J. Clim. 23, 5715–5737 (2010).

    Article  Google Scholar 

  48. Liljedahl, A. K. et al. Tundra water budget and implications of precipitation underestimation. Water Resour. Res. 53, 6472–6486 (2017).

    Article  Google Scholar 

  49. Smol, J. P. & Douglas, M. S. V. Crossing the final ecological threshold in High Arctic ponds. Proc. Natl Acad. Sci. USA 104, 12395–12397 (2007).

    Article  Google Scholar 

  50. Carroll, M. L. & Loboda, T. V. The sign, magnitude and potential drivers of change in surface water extent in Canadian tundra. Environ. Res. Lett. 13, 045009 (2018).

    Article  Google Scholar 

  51. Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Commun. 10, 1329 (2019).

    Article  Google Scholar 

  52. Pelletier, J. D. Formation of oriented thaw lakes by thaw slumping. J. Geophys. Res. Earth Surf. 110, F02018 (2005).

    Article  Google Scholar 

  53. Jorgenson, M. T. et al. Resilience and vulnerability of permafrost to climate change. Can. J. Res. 40, 1219–1236 (2010).

    Article  Google Scholar 

  54. Jepsen, S. M., Voss, C. I., Walvoord, M. A., Minsley, B. J. & Rover, J. Linkages between lake shrinkage/expansion and sublacustrine permafrost distribution determined from remote sensing of interior Alaska, USA. Geophys. Res. Lett. 40, 882–887 (2013).

    Article  Google Scholar 

  55. Hopkins, D. M. Thaw lakes and thaw sinks in the Imuruk Lake area, Seward Peninsula, Alaska. J. Geol. 57, 119–131 (1949).

    Article  Google Scholar 

  56. Kuhn, C. & Butman, D. Declining greenness in Arctic-boreal lakes. Proc. Natl Acad. Sci. USA 118, e2021219118 (2021).

    Article  Google Scholar 

  57. Law, A. C., Nobajas, A. & Sangonzalo, R. Heterogeneous changes in the surface area of lakes in the Kangerlussuaq area of southwestern Greenland between 1995 and 2017. Arct. Antarct. Alp. Res. 50, e1487744 (2018).

    Article  Google Scholar 

  58. Rover, J., Ji, L., Wylie, B. K. & Tieszen, L. L. Establishing water body areal extent trends in interior Alaska from multitemporal Landsat data. Remote Sens. Lett. 3, 595–604 (2012).

    Article  Google Scholar 

  59. Kravtsova, V. I. & Bystrova, A. G. Changes in thermokarst lake size in different regions of Russia for the last 30 years. Earth’s Cryosph. XIII, 16–26 (2009).

    Google Scholar 

  60. Boike, J. et al. Satellite-derived changes in the permafrost landscape of central Yakutia, 2000–2011: wetting, drying, and fires. Glob. Planet. Change 139, 116–127 (2016).

    Article  Google Scholar 

  61. Lindgren, P. R., Farquharson, L. M., Romanovsky, V. E. & Grosse, G. Landsat-based lake distribution and changes in western Alaska permafrost regions between the 1970s and 2010s. Environ. Res. Lett. 16, 025006 (2021).

    Article  Google Scholar 

  62. Nitze, I. et al. Landsat-based trend analysis of lake dynamics across northern permafrost regions. Remote Sens 9, 640 (2017).

    Article  Google Scholar 

  63. Wang, W. et al. Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate. Nat. Geosci. 11, 410–414 (2018).

    Article  Google Scholar 

  64. Jones, B. M. et al. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. J. Geophys. Res. Biogeosci. 116, G00M03 (2011).

    Article  Google Scholar 

  65. Campbell, T. K. F., Lantz, T. C. & Fraser, R. H. Impacts of climate change and intensive lesser snow goose (Chen caerulescens caerulescens) activity on surface water in High Arctic pond complexes. Remote Sens. 10, 1892 (2018).

    Article  Google Scholar 

  66. Burn, C. R. Tundra lakes and permafrost, Richards Island, western Arctic coast, Canada. Can. J. Earth Sci. 39, 1281–1298 (2002).

    Article  Google Scholar 

  67. O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42, 10773–10781 (2015).

    Google Scholar 

  68. Rettelbach, T. et al. A quantitative graph-based approach to monitoring ice-wedge trough dynamics in polygonal permafrost landscapes. Remote Sens. 13, 3098 (2021).

    Article  Google Scholar 

  69. Smith, M. W. Permafrost in the Mackenzie Delta, Northwest Territories (Geological Survey of Canada, 1976).

  70. Jorgenson, M. T. et al. Permafrost Characteristics of Alaska: Surficial Geology of Alaska Vol. 3 (eds Kane, D & Hinkel, K.) (University of Alaska, 2008).

  71. Woo, M. Permafrost hydrology in North America. Atmos. Ocean 24, 201–234 (1986).

    Article  Google Scholar 

  72. Kessler, M. A., Plug, L. J. & Walter Anthony, K. M. Simulating the decadal- to millennial-scale dynamics of morphology and sequestered carbon mobilization of two thermokarst lakes in NW Alaska. J. Geophys. Res. Biogeosci. 117, G00M06 (2012).

    Article  Google Scholar 

  73. Cai, L. et al. The polar WRF downscaled historical and projected twenty-first century climate for the coast and foothills of Arctic Alaska. Front. Earth Sci. 5, 111 (2018).

    Article  Google Scholar 

  74. Nitze, I., Cooley, S. W., Duguay, C. R., Jones, B. M. & Grosse, G. The catastrophic thermokarst lake drainage events of 2018 in northwestern Alaska: fast-forward into the future. Cryosphere 14, 4279–4297 (2020).

    Article  Google Scholar 

  75. Farquharson, L. M., Romanovsky, V. E., Kholodov, A. & Nicolsky, D. Sub-aerial talik formation observed across the discontinuous permafrost zone of Alaska. Nat. Geosci. 15, 475–481 (2022).

    Article  Google Scholar 

  76. Fortier, D., Allard, M. & Shur, Y. Observation of rapid drainage system development by thermal erosion of ice wedges on Bylot Island, Canadian Arctic Archipelago. Permafr. Periglac. Process. 18, 229–243 (2007).

    Article  Google Scholar 

  77. Yu, L. & Zhong, S. Trends in Arctic seasonal and extreme precipitation in recent decades. Theor. Appl. Climatol. 145, 1541–1559 (2021).

    Article  Google Scholar 

  78. Kokelj, S. V. et al. Increased precipitation drives mega slump development and destabilization of ice-rich permafrost terrain, northwestern Canada. Glob. Planet. Change 129, 56–58 (2015).

    Article  Google Scholar 

  79. Christensen, T. R. et al. Multiple ecosystem effects of extreme weather events in the Arctic. Ecosystems 24, 122–136 (2021).

    Article  Google Scholar 

  80. Hinkel, K. M., Outcalt, S. I. & Taylor, A. E. Seasonal patterns of coupled flow in the active layer at three sites in northwest North America. Can. J. Earth Sci. 34, 667–678 (1997).

    Article  Google Scholar 

  81. Kane, D. L., Hinkel, K. M., Goering, D. J., Hinzman, L. D. & Outcalt, S. I. Non-conductive heat transfer associated with frozen soils. Glob. Planet. Change 29, 275–292 (2001).

    Article  Google Scholar 

  82. Mekonnen, Z. A., Riley, W. J., Grant, R. F. & Romanovsky, V. E. Changes in precipitation and air temperature contribute comparably to permafrost degradation in a warmer climate. Environ. Res. Lett. 16, 024008 (2021).

    Article  Google Scholar 

  83. Tarasenko, T. V. Interannual variations in the areas of thermokarst lakes in central Yakutia. Water Resour. 40, 111–119 (2013).

    Article  Google Scholar 

  84. Plug, L. J., Walls, C. & Scott, B. M. Tundra lake changes from 1978 to 2001 on the Tuktoyaktuk Peninsula, western Canadian Arctic. Geophys. Res. Lett. 35, L03502 (2008).

    Article  Google Scholar 

  85. Karlsson, J. M., Lyon, S. W. & Destouni, G. Temporal behavior of lake size-distribution in a thawing permafrost landscape in northwestern Siberia. Remote Sens 6, 621–636 (2014).

    Article  Google Scholar 

  86. Beck, I., Ludwig, R., Bernier, M., Lévesque, E. & Boike, J. Assessing permafrost degradation and land cover changes (1986-2009) using remote sensing data over Umiujaq, sub-Arctic Québec. Permafr. Periglac. Process. 26, 129–141 (2015).

    Article  Google Scholar 

  87. Sannel, A. B. K. & Brown, I. A. High-resolution remote sensing identification of thermokarst lake dynamics in a subarctic peat plateau complex. Can. J. Remote Sens. 36, S26–S40 (2010).

    Article  Google Scholar 

  88. Walter Anthony, K. M. et al. Decadal-scale hotspot methane ebullition within lakes following abrupt permafrost thaw. Environ. Res. Lett. 16, 035010 (2021).

    Article  Google Scholar 

  89. Kravtsova, V. I. & Rodionova, T. V. Variations in size and number of thermokarst lakes in different permafrost regions: spaceborne evidence. Earth’s Cryosph. XX, 75–81 (2016).

    Google Scholar 

  90. Muster, S., Heim, B., Abnizova, A. & Boike, J. Water body distributions across scales: a remote sensing based comparison of three Arctic tundra wetlands. Remote Sens 5, 1498–1523 (2013).

    Article  Google Scholar 

  91. Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–105 (2016).

    Article  Google Scholar 

  92. Olthof, I., Fraser, R. H. & Schmitt, C. Landsat-based mapping of thermokarst lake dynamics on the Tuktoyaktuk Coastal Plain, Northwest Territories, Canada since 1985. Remote Sens. Environ. 168, 194–204 (2015).

    Article  Google Scholar 

  93. Webb, E. E. et al. Permafrost thaw drives surface water decline across lake-rich regions of the Arctic. Nat. Clim. Change 12, 841–846 (2022).

    Article  Google Scholar 

  94. Planet Application Program Interface: In Space for Life on Earth (Planet Team, 2017); https://api.planet.com

  95. Cooley, S. W., Smith, L. C., Ryan, J. C., Pitcher, L. H. & Pavelsky, T. M. Arctic-boreal lake dynamics revealed using CubeSat imagery. Geophys. Res. Lett. 46, 2111–2120 (2019).

    Article  Google Scholar 

  96. Chapin, F. S. et al. Arctic and boreal ecosystems of western North America as components of the climate system. Glob. Change Biol. 6, 211–223 (2000).

    Article  Google Scholar 

  97. Vihma, T. et al. The atmospheric role in the Arctic water cycle: a review on processes, past and future changes, and their impacts. J. Geophys. Res. Biogeosci. 121, 586–620 (2016).

    Article  Google Scholar 

  98. Medeiros, A. S., Wood, P., Wesche, S. D., Bakaic, M. & Peters, J. F. Water security for northern peoples: review of threats to Arctic freshwater systems in Nunavut. Can. Reg. Environ. Change 17, 635–647 (2017).

    Article  Google Scholar 

  99. Cott, P. A., Sibley, P. K., Somers, W. M., Lilly, M. R. & Gordon, A. M. A review of water level fluctuations on aquatic biota with an emphasis on fishes in ice-covered lakes. J. Am. Water Resour. Assoc. 44, 343–359 (2008).

    Article  Google Scholar 

  100. Brown, J., Ferrians, O., Heginbottom, J. A. & Melnikov, E. Circum-Arctic Map of Permafrost and Ground-Ice Conditions, Version 2 (National Snow and Ice Data Center, 2002); https://doi.org/10.7265/skbg-kf16

  101. Olefeldt, D. et al. The Boreal–Arctic Wetland and Lake Dataset (BAWLD). Earth Syst. Sci. Data 13, 5127–5149 (2021).

    Article  Google Scholar 

  102. Muñoz Sabater, J. ERA5-Land Hourly Data from 1981 to Present (CDS, 2019); https://doi.org/10.24381/cds.e2161bac

  103. Brewer, M. C. The thermal regime of an Arctic lake. Eos 39, 278–284 (1958).

    Google Scholar 

  104. Kane, D. L. & Slaughter, C. W. Recharge of a central Alaska lake by subpermafrost groundwater. In Permafrost: Proceedings of the 2nd International Conference, Yakutsk, North American Contribution (eds Pewe, T. L. & MacKay, J. R.) 458–462 (National Academy of Sciences, 1973).

  105. Roach, J. K., Griffith, B. & Verbyla, D. Landscape influences on climate-related lake shrinkage at high latitudes. Glob. Change Biol. 19, 2276–2284 (2013).

    Article  Google Scholar 

  106. Racine, C. H. & Walters, J. C. Groundwater-discharge fens in the Tanana lowlands, interior Alaska, USA. Arct. Alp. Res. 26, 418–426 (1994).

    Article  Google Scholar 

  107. Gao, H. Satellite remote sensing of large lakes and reservoirs: from elevation and area to storage. WIREs Water 2, 147–157 (2015).

    Article  Google Scholar 

  108. Pastick, N. J. et al. Spatiotemporal remote sensing of ecosystem change and causation across Alaska. Glob. Change Biol. 25, 1171–1189 (2019).

    Article  Google Scholar 

  109. Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E. & Boike, J. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and subarctic. Nat. Commun. 9, 5423 (2018).

    Article  Google Scholar 

  110. Lader, R., Bhatt, U. S., Walsh, J. E., Rupp, T. S. & Bieniek, P. A. Two-meter temperature and precipitation from atmospheric reanalysis evaluated for Alaska. J. Appl. Meteorol. Climatol. 55, 901–922 (2016).

    Article  Google Scholar 

  111. Velikou, K., Lazoglou, G., Tolika, K. & Anagnostopoulou, C. Reliability of the ERA5 in replicating mean and extreme temperatures across Europe. Water 14, 543 (2022).

    Article  Google Scholar 

  112. Lindsay, R., Wensnahan, M., Schweiger, A. & Zhang, J. Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Clim. 24, 2588–2606 (2014).

    Article  Google Scholar 

  113. Sen, P. K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).

    Article  Google Scholar 

  114. Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).

    Article  Google Scholar 

  115. Hothorn, T., Hornik, K., van de Wiel, M. A. & Zeileis, A. Implementing a class of permutation tests: the coin package. J. Stat. Softw. 28, 1–23 (2008).

    Article  Google Scholar 

  116. R Core Development Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  117. Agresti, A. An introduction to categorical data analysis (John Wiley & Sons, 2018).

Download references

Acknowledgements

The authors thank K. Martin of the University of Florida CLAS Communications Support Office for help with initial design of Box 1, and J. Lichstein, M. Loranty, J. Vogel and S. Gerber for constructive feedback on an early version of the manuscript. This work was supported by NASA FINESST award 80NSSC19K134 to E.E.W. and J. Lichstein, and NSF awards OPP-1722572/OPP-2051888 and RISE-1927872/ICER-2052107 to A.K.L.

Author information

Authors and Affiliations

Authors

Contributions

E.E.W. developed the concept, designed the analyses and wrote the manuscript with assistance from A.K.L. A.K.L. conceived of the conceptual figure (Box 1). E.E.W. conducted the literature search, performed the analyses and created the figures.

Corresponding author

Correspondence to Elizabeth E. Webb.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Laurence Smith, Christopher Burn and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Tom Richardson, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Trends in climate variables, 1981–2020.

Values are the Sen’s slope of the variable (average annual temperature, total annual precipitation, annual rainfall, and annual snowfall,) vs. year and represent the rate of change over time. Data were obtained from the ERA5-Land reanalysis dataset102. Generated using Copernicus Climate Change Service Information [2022].

Source data

Extended Data Fig. 2 The relationship between trends in annual precipitation (1981–2020) and lake area trend separated by regions with similar climate drivers.

Trends in annual precipitation were not related to trends in lake area change across the northern permafrost zone (χ2 = 1.8, df = 2, p = 0.4). Circles show the locations of the study sites included in our analysis. Annual precipitation trends were calculated using the ERA-5 Land hourly dataset102. Contains modified Copernicus Climate Change Service Information [2022].

Source data

Extended Data Fig. 3 Study sites tracking lake area change arranged by start date and separated by permafrost zone.

Each bar shows the study period and lake area trend direction. On average, study length was 32 years (minimum: 7 years, maximum: 68 years), and the most common starting decade was the 1970s (35%) with 22% of studies beginning before 1970 and only 11% of studies beginning in the 2000s. The earliest starting (ending) year was 1944 (1998) the latest was 2002 (2020).

Source data

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2, and Supplementary Fig. 1.

Source data

Source Data Fig. 1

Graphical source data.

Source Data Fig. 2

Graphical source data; see source data for Extended Data Fig. 1 for precipitation trend source data.

Source Data Fig. 3

Graphical source data.

Source Data Extended Data Fig. 1

Graphical source data (band 1 = annual temp; band 2 = rain; band 3 = snow; band 4 = total precipitation).

Source Data Extended Data Fig. 2

Graphical source data.

Source Data Extended Data Fig. 3

Graphical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webb, E.E., Liljedahl, A.K. Diminishing lake area across the northern permafrost zone. Nat. Geosci. 16, 202–209 (2023). https://doi.org/10.1038/s41561-023-01128-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-023-01128-z

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene