Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Jurassic greenhouse ice-sheet fluctuations sensitive to atmospheric CO2 dynamics

Abstract

Sea-level proxy records and palaeoclimate models suggest that globally elevated temperatures during the greenhouse climate of the Jurassic were punctuated by poorly understood, transient icehouse events. Here we investigate atmospheric CO2–ice-sheet dynamics as a case study from the Early Jurassic Pliensbachian–Toarcian transition (182.7–180.6 million years ago). Applying the C3 CO2 plant proxy to previously published fossil wood data reveals that CO2 levels during this transition ranged from 250 to 400 ppm. Previously published belemnite δ18O values suggest that sea-level low stands were equivalent to ice volumes up to two-thirds of Antarctica today. Beginning with the Toarcian ocean anoxic event, these ice sheets largely melted when CO2 reached sustained concentrations of ~500–700 ppm. Compared with the Cenozoic East Antarctic Ice Sheet and ice sheets modelled for the Middle Jurassic, Early Jurassic ice sheets exhibit minimal lags (hysteresis) between warming and cooling limbs, suggesting they were thin and located at lower latitudes and elevations with a higher temperature sensitivity to melting. These sensitivities of ice volume to CO2 provide additional constraints on climate models for application to warming transitions in both the past and future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Early Jurassic geographic setting for the icehouse–greenhouse transition.
Fig. 2: Isotopic composition of carbon reservoirs from the Western Tethys region.
Fig. 3: Atmospheric CO2 concentration and ice-sheet indicators from the study area.
Fig. 4: Atmospheric CO2 versus sea level from Early Jurassic proxy data and from Mesozoic and Cenozoic climate models.

Similar content being viewed by others

Data availability

All values from wood and bulk carbonate δ13C to compute atmospheric CO2 concentrations and all values from the δ18O of belemnites for sea-level estimates were compiled from other sources as discussed in the main text and Methods section. Readers may contact L.N. if additional information is needed from this manuscript.

References

  1. Haq, B. U. Jurassic sea-level variations: a reappraisal. GSA Today 28, 4–10 (2017).

    Article  Google Scholar 

  2. Sahagian, D., Pinous, O., Olferiev, A. & Zakharov, V. Eustatic curve for the Middle Jurassic–Cretaceous based on Russian platform and Siberian stratigraphy: zonal resolution. Am. Assoc. Pet. Geol. Bull. 80, 1433–1458 (1996).

    Google Scholar 

  3. Donnadieu, Y. et al. A mechanism for brief glacial episodes in the Mesozoic greenhouse. Paleoceanography 26, PA3212 (2011).

    Article  Google Scholar 

  4. Korte, C. & Hesselbo, S. P. Shallow marine carbon and oxygen isotope and elemental records indicate icehouse–greenhouse cycles during the Early Jurassic. Paleoceanography 26, PA4219 (2011).

    Article  Google Scholar 

  5. Dromart, G. et al. Ice age at the Middle–Late Jurassic transition? Earth Planet. Sci. Lett. 213, 205–220 (2003).

    Article  Google Scholar 

  6. Price, G. D. The evidence and implications of polar ice during the Mesozoic. Earth Sci. Rev. 48, 183–210 (1999).

    Article  Google Scholar 

  7. Rogov, M. A. & Zakharov, V. A. Jurassic and Lower Cretaceous glendonite occurrences and their implication for Arctic paleoclimate reconstructions and stratigraphy. Earth Sci. Front. 17, 345–347 (2010).

    Google Scholar 

  8. Teichert, B. M. A. & Luppold, F. W. Glendonites from an Early Jurassic methane seep—climate or methane indicators? Palaeogeogr. Palaeoclimatol. Palaeoecol. 390, 81–93 (2013).

    Article  Google Scholar 

  9. Suan, G. et al. Polar record of Early Jurassic massive carbon injection. Earth Planet. Sci. Lett. 312, 102–113 (2011).

    Article  Google Scholar 

  10. Brandt, K. Glacioeustatic cycles in the Early Jurassic? Neues Jahrb. Geol. Palaontol. Abh. 5, 257–274 (1986).

    Google Scholar 

  11. Woolfe, K. J. & Francis, J. E. An Early to Middle Jurassic glaciation-evidence from Allan Hills, Transantarctic Mountains. In Proc. 6th International Symposium on Antarctic Earth Sciences, Japan 652–653 (1991).

  12. Dera, G. & Donnadieu, Y. Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the early Toarcian anoxic event. Paleoceanography 27, PA2211 (2012).

    Article  Google Scholar 

  13. Silva, R. C. & Duarte, L. V. Organic matter production and preservation in the Lusitanian Basin (Portugal) and Pliensbachian climatic hots snaps. Glob. Planet. Change 131, 24–34 (2015).

    Article  Google Scholar 

  14. Gómez, J. J., Comas-Rengifo, M. J. & Goy, A. Paleoclimatic oscillations in the Pliensbachian (Early Jurassic) of the Asturian Basin (Northern Spain). Clim. Past 12, 1199–1274 (2016).

    Article  Google Scholar 

  15. Suan, G. et al. Secular environmental precursors to early Toarcian (Jurassic) extreme climate changes. Earth Planet. Sci. 290, 448–458 (2010).

    Article  Google Scholar 

  16. Fantasia, A. et al. Global versus local processes during the Pliensbachian–Toarcian transition at the Peniche GSSP, Portugal: a multi-proxy record. Earth Sci. Rev. 198, 2932 (2019).

    Article  Google Scholar 

  17. Sell, B. et al. Evaluating the temporal link between the Karoo LIP and climatic–biologic events of the Toarcian Stage with high-precision U-Pb geochronology. Earth Planet. Sci. Lett. 408, 48–56 (2014).

    Article  Google Scholar 

  18. Hesselbo, S. P. et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406, 392–395 (2000).

    Article  Google Scholar 

  19. Hesselbo, S. P., Jenkyns, H. C., Duarte, L. V. & Oliveira, L. C. V. Carbon-isotope record of the Early Jurassic (Toarcian) ocean anoxic event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth Planet. Sci. Lett. 253, 455–470 (2007).

    Article  Google Scholar 

  20. Schubert, B. A. & Jahren, A. H. Incorporating the effects of photorespiration into terrestrial paleoclimate reconstruction. Earth Sci. Rev. 177, 637–642 (2018).

    Article  Google Scholar 

  21. Miller, K. G., Wright, J. D. & Browning, J. V. Visions of ice sheets in a greenhouse world. Mar. Geol. 217, 215–231 (2005).

    Article  Google Scholar 

  22. Gómez, J. J., Goy, A. & Canales, M. L. Seawater temperature and carbon isotope variations in belemnites linked to mass extinction during the Toarcian (Early Jurassic) in Central and Northern Spain. Comparison with other European sections. Palaeogeogr. Palaeoclimatol. Palaeoecol. 258, 28–58 (2008).

    Article  Google Scholar 

  23. Rosales, I., Quesada, S. & Robles, S. Paleotemperature variations of Early Jurassic seawater recorded in geochemical trends of belemnites from the Basque–Cantabrian basin, northern Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203, 253–275 (2004).

    Article  Google Scholar 

  24. van de Schootbrugge, B. et al. Early Jurassic climate change and the radiation of organic-walled phytoplankton in the Tethys Ocean. Paleobiology 31, 73–97 (2010).

    Article  Google Scholar 

  25. Vera, E. I. & Césari, S. N. New species of conifer wood from the Baqueró Group (Early Cretaceous) of Patagonia. Ameghiniana 52, 468–471 (2015).

    Article  Google Scholar 

  26. Wilson, J. P. et al. Dynamic Carboniferous tropical forests: new views of plant function and physiological forcing of climate. New Phytol. 215, 1333–1353 (2017).

    Article  Google Scholar 

  27. Lomax, B. H., Lake, J. A., Leng, M. J. & Jardine, P. E. An experimental evaluation of the use of Δ13C as a proxy for palaeoatmospheric CO2. Geochim. Cosmochim. Acta 247, 162–174 (2019).

    Article  Google Scholar 

  28. Tipple, B. J., Meyers, S. R. & Pagani, M. Carbon isotope ratio of Cenozoic CO2: a comparative evaluation of available geochemical proxies. Paleoceanography 25, PA3202 (2010).

    Article  Google Scholar 

  29. Diefendorf, A. F., Freeman, K. H. & Wing, S. L. Distribution and carbon isotope patterns of diterpenoids and triterpenoids in modern temperate C3 trees and their geochemical substantial. Geochim. Cosmochim. Acta 85, 342–356 (2012).

    Article  Google Scholar 

  30. Lenton, T. M., Daines, S. J. & Mills, B. J. W. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018).

    Article  Google Scholar 

  31. McElwain, J. C., Wade-Murphy, J. & Hesselbo, S. P. Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals. Nature 435, 479–482 (2005).

    Article  Google Scholar 

  32. Ruebsam, W., Reolid, M. & Schwark, L. δ13C of terrestrial vegetation records Toarcian CO2 and climate gradients. Sci. Rep. 10, 117 (2020).

    Article  Google Scholar 

  33. Huang, C. & Hesselbo, S. P. Pacing of the Toarcian oceanic anoxic event (Early Jurassic) from astronomical correlation of marine sections. Gondwana Res. 25, 1348–1356 (2014).

    Article  Google Scholar 

  34. Fung, M. K., Katz, M. E., Miller, K. G., Browning, J. V. & Rosenthal, Y. Sequence stratigraphy, micropaleontology, and foraminiferal geochemistry, Bass River, New Jersey paleoshelf, USA: implications for Eocene ice-volume changes. Geosphere 15, 502–532 (2019).

    Article  Google Scholar 

  35. Oerlemans, J. A model of the Antarctic ice sheet. Nature 297, 550–553 (1982).

    Article  Google Scholar 

  36. Esch, M. B. & Herterich, K. A two-dimensional coupled atmosphere–ice sheet–continent model designed for paleoclimatic simulations. Ann. Glaciol. 14, 55–57 (1990).

    Article  Google Scholar 

  37. Foster, G. L. & Rohling, E. J. Relationship between sea level and climate forcing by CO2 on geological timescales. Proc. Natl Acad. Sci. USA 110, 1209–1214 (2013).

    Article  Google Scholar 

  38. Gasson, E., DeConto, R. M., Pollard, D. & Levy, R. H. Dynamic Antarctic ice sheet during the early to mid-Miocene. Proc. Natl Acad. Sci. USA 113, 3459–3464 (2016).

    Article  Google Scholar 

  39. Booth, B. B. et al. Narrowing the range of future climate projections using historical observations of atmospheric CO2. J. Clim. 30, 3039–3053 (2017).

    Article  Google Scholar 

  40. Hesselbo, S. P. & Pienkowski, G. Stepwise atmospheric carbon-isotope excursion during the Toarcian oceanic anoxic event (Early Jurassic, Polish Basin). Earth Planet. Sci. Lett. 301, 365–372 (2011).

    Article  Google Scholar 

  41. Storm, M. S. et al. Orbital pacing and secular evolution of the Early Jurassic carbon cycle. Proc. Natl Acad. Sci. USA 117, 3974–3982 (2020).

    Article  Google Scholar 

  42. Jenkyns, H. C. & Clayton, C. J. Lower Jurassic epicontinental carbonates and mudstones from England and Wales: chemostratigraphic signals and the early Toarcian anoxic event. Sedimentology 44, 687–706 (1997).

    Article  Google Scholar 

  43. Hermoso, M., Minoletti, F. & Pellenard, P. Black shale deposition during Toarcian super-greenhouse driven by sea level. Clim. Past 9, 2703–2712 (2013).

    Article  Google Scholar 

  44. Schouten, S., van Kaam-Peters, M. E., Rijpstra, W. I. C., Schoell, M. & Damste, J. S. S. Effects of an oceanic anoxic event on the stable carbonate isotopic composition of early Toarcian carbon. Am. J. Sci. 300, 1–22 (2000).

    Article  Google Scholar 

  45. Sabatino, N. et al. Carbon-isotope records of the Early Jurassic (Toarcian) oceanic anoxic event from the Valdobia (Umbria-Marche Apennines) and Monte Mangart (Julian Alps) sections: palaeooceaogrpahic and stratigraphic implications. Sedimentology 56, 1307–1328 (2009).

    Article  Google Scholar 

  46. Garbe, J., Albrecht, T., Levermann, A., Donges, J. & Winkelmann, R. The hysteresis of the Antarctic Ice Sheet. Nature 585, 538–544 (2020).

    Article  Google Scholar 

  47. Suan, G., Mattioli, E., Pittet, B., Mailliot, S. & Lécuyer, C. Evidence for major environmental perturbation prior to and during the Toarcian (Early Jurassic) oceanic anoxic event form the Lusitanian Basin, Portugal. Paleoceanography 23, PA1202 (2008).

    Article  Google Scholar 

  48. Müller, T. et al. New multiproxy record of the Jenkyns Event (also known as the Toarcian anoxic event) from the Mecsek Mountains (Hungary): differences, duration and drivers. Sedimentology 64, 66–86 (2017).

    Article  Google Scholar 

  49. Ogg, J. G. & Hinnov, A. L. in The Geologic Time Scale 2012 (eds Gradstein, F. M. et al.) Ch. 26 (Elsevier, 2012).

  50. McCarroll, D. & Loader, N. J. Stable isotopes in tree rings. Quat. Sci. Rev. 23, 771–801 (2004).

    Article  Google Scholar 

  51. Voelker, S. L. et al. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies. Glob. Change Biol. 22, 889–902 (2016).

    Article  Google Scholar 

  52. Tholen, D. & Zhu, X. G. The mechanistic basis of internal conductance: a theoretical analysis of mesophyll cell photosynthesis and CO2 diffusion. Plant Physiol. 156, 90–105 (2011).

    Article  Google Scholar 

  53. Cui, Y. & Schubert, B. A. Quantifying the uncertainty of past pCO2 determined from changes in C3 plant carbon isotope fractionation. Geochim. Cosmochim. Acta 172, 127–138 (2016).

    Article  Google Scholar 

  54. Schubert, B. A. & Jahren, A. H. The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants. Geochim. Cosmochim. Acta 96, 29–43 (2012).

    Article  Google Scholar 

  55. Philippe, M. et al. The palaeolatitudinal distribution of fossil wood genera as a proxy for European Jurassic terrestrial climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 466, 373–381 (2017).

    Article  Google Scholar 

  56. Zhou, Z. A heterophyllous conifer from the Cretaceous of East China. Palaeontology 26, 789–811 (1983).

    Google Scholar 

  57. Farjon A. A. Natural History of Conifers (Timber Press, 2008).

  58. Diefendorf, A. F., Mueller, K. E., Wing, S. L., Koch, P. L. & Freeman, K. H. Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proc. Natl Acad. Sci. USA 107, 5738–5743 (2010).

    Article  Google Scholar 

  59. Kohn, M. J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc. Natl Acad. Sci. USA 107, 19691–19695 (2010).

    Article  Google Scholar 

  60. Schlesser, G. H., Helle, G., Lücke, A. & Vos, H. Isotope signals as climate proxies: the role of transfer functions in the study of terrestrial archives. Quat. Sci. Rev. 18, 927–943 (1999).

    Article  Google Scholar 

  61. Silva, R. L., Duarte, L. V. & Filho, J. G. M. Optical and geochemical characterization of upper Sinemurian (Lower Jurassic) fossil wood from the Lusitanian Basin (Portugal). Geochem. J. 47, 489–498 (2013).

    Article  Google Scholar 

  62. Lukens, W. E., Eze, P. & Schubert, B. A. The effect of diagenesis on carbon isotope values of fossil wood. Geology 47, 987–991 (2019).

    Article  Google Scholar 

  63. Armendáriz, M. et al. An approach to estimate Lower Jurassic seawater oxygen isotope composition using δ18O and Mg/Ca ratios of belemnite calcites (early Pliensbachian, northern Spain). Terra Nova 25, 439–445 (2013).

    Article  Google Scholar 

  64. Lear, C. H., Elderfield, H. & Wilson, P. A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287, 269–272 (2000).

    Article  Google Scholar 

  65. Hollis, C. J. et al. The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database. Geosci. Model Dev. 12, 3149–3206 (2019).

    Article  Google Scholar 

  66. Rosales, I. et al. Isotope records (C–O–Sr) of late Pliensbachian–early Toarcian environmental perturbations in the westernmost Tethys (Majorca Island, Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 497, 168–185 (2018).

    Article  Google Scholar 

  67. Val, J., Bádenas, B., Aurell, M. & Rosales, I. Cyclostratigraphy and chemostratigraphy of a bioclastic storm-dominated carbonate ramp (late Pliensbachian, Iberian Basin). Sediment. Geol. 355, 93–113 (2017).

    Article  Google Scholar 

  68. Grossman, E. in The Geologic Time Scale 2012 (eds Gradstein, F. M. et al.) Ch. 10 (Elsevier, 2012).

  69. Ruebsam, W., Munzberger, P. & Schwark, L. Chronology of the early Toarcian environmental crisis in the Lorraine Sus-Basin (NE Paris Basin). Earth Planet. Sci. Lett. 404, 273–282 (2014).

    Article  Google Scholar 

  70. Pittet, B., Suan, G., Fabien, L., Duarte, L. V. & Mattioli, E. Carbon isotope evidence for sedimentary discontinuities in the lower Toarcian of the Lusitanian Basin (Portugal): sea level change at the onset of the oceanic anoxic event. Sediment. Geol. 303, 1–14.

  71. Royer, D. L., Pagani, M. & Beerling, D. J. Geobiological constraints on Earth system sensitivity of CO2 during the Cretaceous and Cenozoic. Geobiology 10, 298–310 (2012).

    Article  Google Scholar 

  72. Metodiev, L. & Koleva-Rekalova, E. Stable isotope records (δ18O and δ13C) of Lower–Middle Jurassic belemnites from the Western Balkan mountains (Bulgaria): palaeoenvironmental application. Appl. Geochem. 23, 2845–2856 (2008).

    Article  Google Scholar 

  73. McArthur, J. M., Donovan, D. T., Thirlwall, M. F., Fouke, B. W. & Mattey, D. Strontium isotope profile of the early Toarcian (Jurassic) oceanic anoxic event, the duration of ammonite biozones, and belemnite palaeotemperatures. Earth Planet. Sci. Lett. 179, 269–285 (2000).

    Article  Google Scholar 

  74. Jenkyns, H. G., Jones, C. E., Gröcke, D., Hesselbo, S. P. & Parkinson, D. N. Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography. J. Geol. Soc. Lond. 159, 351–378 (2002).

    Article  Google Scholar 

  75. Ullmann, C. V., Thibault, N., Ruhl, M., Hesselbo, S. P. & Korte, C. Effect of a Jurassic oceanic anoxic event on belemnite ecology and evolution. Proc. Natl Acad. Sci. USA 111, 10073–10076 (2014).

    Article  Google Scholar 

  76. Harazim, D. et al. Spatial variability of watermass conditions within the European Epicontinental Seaway during the Early Jurassic (Pliensbachian–Toarcian). Sedimentology 60, 359–390 (2010).

    Article  Google Scholar 

  77. Dera, G. et al. Water mass exchange and variations in seawater temperature in the NW Tethys during the Early Jurassic: evidence from neodymium and oxygen isotopes of fish teeth and belemnites. Earth Planet. Sci. Lett. 286, 198–207 (2009).

    Article  Google Scholar 

  78. Bailey, T. R., Rosenthal, Y., McArthur, J. M., van de Schootbrugge, B. & Thirlwall, M. F. Paleoceanographic changes of the late Pliensbachian–early Toarcian interval: a possible link to the genesis of an oceanic anoxic event. Earth Planet. Sci. Lett. 212, 307–320 (2003).

    Article  Google Scholar 

  79. Montañez, I. P. & Poulsen, C. J. The late Paleozoic ice age: an evolving paradigm. Annu. Rev. Earth Planet. Sci. 41, 629–656 (2013).

    Article  Google Scholar 

  80. Ahokas, J. M., Nystuen, J. P. & Martinius, A. W. Stratigraphic signatures of punctuated rise in relative sea-level in an estuary-dominated heterolithic succession: incised valley fills of the Toarcian Ostrealv Formation, Neill Klinter Group (Jameson Land, East Greenland). Mar. Pet. Geol. 50, 103–129 (2014).

    Article  Google Scholar 

  81. Krencker, F.-C., Kindstrom, S. & Bodin, S. A major sea-level drop briefly precedes the Toarcian oceanic anoxic event: implication for Early Jurassic climate and carbon cycle. Sci. Rep. 9, 12518 (2014).

    Article  Google Scholar 

  82. Marjanac, T. & Steel, R. J. Dunlin Group sequence stratigraphy in the northern North Sea: a model for Cook Sandstone deposition. Am. Assoc. Pet. Geol. Bull. 81, 276–292 (1997).

    Google Scholar 

Download references

Acknowledgements

We thank H. Jahren for comments that improved the clarity of the manuscript. S. Hesselbo kindly provided his previously published stable carbon and oxygen data from the Peniche study area.

Author information

Authors and Affiliations

Authors

Contributions

L.N. and D.B. designed the study. J.W. helped provide the underlying assumptions and plant physiological interpretations of the C3 plant CO2 proxy. L.N. wrote the main part of the paper in consultation with D.B. and J.W.

Corresponding author

Correspondence to Lee Nordt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature Geoscience thanks Michaël Hermoso and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 δ18O belemnite values from the Western Tethys.

Note general congruence of data prior to the T-CIE, and greater scattering during and after. Study areas in the northern Tethys (Bulgaria72; Yorkshire, UK, plus symbol73; Yorkshire, UK, gray square74; Yorkshire, UK, orange circle75; S. France76; Belgium77; Germany78; and S. France77) were likely influenced by freshwater lowering δ18O values during the T-CIE, where because of anoxia, belemnites may have migrated to warmer surface habitats further lowering isotopic values50. Scattered δ18O values after the T-CIE are attributed to the evolution of new belemnite species adapted to different habitats in the water column50. Data from Portugal and Spain (N. Spain, gray circle23; N. Spain, blue circle22; N. Spain, red circle24; Portugal, green circles19) were influenced less by freshwater and anoxia, and used for the sea level computations.

Extended Data Fig. 2 Curve relating eustatic sea level to ice volume.

(modified from ref. 79,80,81,82). Total pre-industrial ice volume (Antarctica-AnIS + Greenland-GrIS) is ~ 34 M km3 with a sea level equivalent of 64 m (LGM – Last Glacial Maximum). Early Jurassic Atmospheric CO2 is only that from the late Pliensbachian.

Extended Data Table 1 Modern carbon isotopes of Cuprussaceae wood and bark
Extended Data Table 2 Uncertainty calculation for the C3 Plant CO2 Proxy (CPC)
Extended Data Table 3 Early Jurassic valley incision rates and glacio-eustasy estimates

Supplementary information

Supplementary Tables

Supplementary Tables 1–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nordt, L., Breecker, D. & White, J. Jurassic greenhouse ice-sheet fluctuations sensitive to atmospheric CO2 dynamics. Nat. Geosci. 15, 54–59 (2022). https://doi.org/10.1038/s41561-021-00858-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00858-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing