Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Past abrupt changes, tipping points and cascading impacts in the Earth system

Abstract

The geological record shows that abrupt changes in the Earth system can occur on timescales short enough to challenge the capacity of human societies to adapt to environmental pressures. In many cases, abrupt changes arise from slow changes in one component of the Earth system that eventually pass a critical threshold, or tipping point, after which impacts cascade through coupled climate–ecological–social systems. The chance of detecting abrupt changes and tipping points increases with the length of observations. The geological record provides the only long-term information we have on the conditions and processes that can drive physical, ecological and social systems into new states or organizational structures that may be irreversible within human time frames. Here, we use well-documented abrupt changes of the past 30 kyr to illustrate how their impacts cascade through the Earth system. We review useful indicators of upcoming abrupt changes, or early warning signals, and provide a perspective on the contributions of palaeoclimate science to the understanding of abrupt changes in the Earth system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of abrupt events over the past 30 kyr overlaid on a δ18O time series.
Fig. 2: Cascades of abrupt changes in physical–ecological–societal components of the Earth system.
Fig. 3: A map of selected atmospheric, oceanographic, ecosystem and societal records with abrupt changes or tipping points in the past 20 kyr.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    Article  Google Scholar 

  2. Lohmann, G., Butzin, M., Eissner, N., Shi, X. & Stepanek, C. Abrupt climate and weather changes across time scales. Paleoceanogr. Paleoclimatol. 35, e2019PA003782 (2020).

    Article  Google Scholar 

  3. Meehl, G. A. & Stocker, T. F. Global Climate Projections (Cambridge Univ. Press, 2007).

  4. Steiger, N. J. et al. Oceanic and radiative forcing of medieval megadroughts in the American Southwest. Sci. Adv. 5, eaax0087 (2019).

    Article  Google Scholar 

  5. Lustig, T., Klassen, S., Evans, D., French, R. & Moffat, I. Evidence for the breakdown of an Angkorian hydraulic system, and its historical implications for understanding the Khmer Empire. J. Archaeol. Sci. Rep. 17, 195–211 (2018).

    Google Scholar 

  6. Cook, E. R. et al. Asian monsoon failure and megadrought during the last millennium. Science 328, 486–489 (2010).

    Article  Google Scholar 

  7. Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature 575, 592–595 (2019).

    Article  Google Scholar 

  8. Rocha, J. C., Peterson, G., Bodin, O. & Levin, S. Cascading regime shifts within and across scales. Science 362, 1379–1383 (2018).

    Article  Google Scholar 

  9. Ganopolski, A. & Rahmstorf, S. Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, 153–158 (2001).

    Article  Google Scholar 

  10. Pedro, J. B. et al. The last deglaciation: timing the bipolar seesaw. Clim. Past 7, 671–683 (2011).

    Article  Google Scholar 

  11. Lynch-Stieglitz, J. The Atlantic meridional overturning circulation and abrupt climate change. Annu. Rev. Mar. Sci. 9, 83–104 (2017).

    Article  Google Scholar 

  12. McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).

    Article  Google Scholar 

  13. Broecker, W. S., Bond, G., Klas, M., Bonani, G. & Wolfli, W. A salt oscillator in the glacial Atlantic? 1. The concept. Paleoceanogr. Paleoclimatol. 5, 469–477 (1990).

    Article  Google Scholar 

  14. Gasson, E. G. W., DeConto, R. M., Pollard, D. & Clark, C. D. Numerical simulations of a kilometre-thick Arctic ice shelf consistent with ice grounding observations. Nat. Commun. 9, 1510 (2018).

  15. MacAyeal, D. R. Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic’s Heinrich Events. Paleoceanography 8, 775–784 (1993).

    Article  Google Scholar 

  16. Bassis, J. N., Petersen, S. V. & Mac Cathles, L. Heinrich events triggered by ocean forcing and modulated by isostatic adjustment. Nature 542, 332–334 (2017).

    Article  Google Scholar 

  17. Obase, T. & Abe-Ouchi, A. Abrupt Bølling-Allerød warming simulated under gradual forcing of the last deglaciation. Geophys. Res. Lett. 46, 11397–11405 (2019).

    Article  Google Scholar 

  18. Boers, N. Early-warning signals for Dansgaard-Oeschger events in a high-resolution ice core record. Nat. Commun. 9, 2556 (2018).

  19. Wolff, E. W., Chappellaz, J., Blunier, T., Rasmussen, S. O. & Svensson, A. Millennial-scale variability during the last glacial: the ice core record. Quat. Sci. Rev. 29, 2828–2838 (2010).

    Article  Google Scholar 

  20. Bereiter, B. et al. Mode change of millennial CO2 variability during the last glacial cycle associated with a bipolar marine carbon seesaw. Proc. Natl Acad. Sci. USA 109, 9755–9760 (2012).

    Article  Google Scholar 

  21. Kanner, L. C., Burns, S. J., Cheng, H. & Edwards, R. L. High-latitude forcing of the South American summer monsoon during the last glacial. Science 335, 570–573 (2012).

    Article  Google Scholar 

  22. Bauska, T. K., Marcott, S. A. & Brook, E. J. Abrupt changes in the global carbon cycle during the last glacial period. Nat. Geosci. 14, 91–96 (2021).

    Article  Google Scholar 

  23. Gibson, K. A. & Peterson, L. C. A 0.6 million year record of millennial-scale climate variability in the tropics. Geophys. Res. Lett. 41, 969–975 (2014).

    Article  Google Scholar 

  24. Goni, M. F. S. et al. Contrasting impacts of Dansgaars-Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quat. Sci. Rev. 27, 1136–1151 (2008); corrigendum 27, 1789 (2008).

  25. Cooper, A. et al. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349, 602–606 (2015).

    Article  Google Scholar 

  26. Marcott, S. A. et al. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514, 616–619 (2014).

    Article  Google Scholar 

  27. Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).

    Article  Google Scholar 

  28. Su, Z., Ingersoll, A. P. & He, F. On the abruptness of Bølling-Allerød warming. J. Clim. 29, 4965–4975 (2016).

    Article  Google Scholar 

  29. Bard, E., Hamelin, B. & Delanghe-Sabatier, D. Deglacial meltwater pulse 1B and younger dryas sea levels revisited with boreholes at tahiti. Science 327, 1235–1237 (2010).

    Article  Google Scholar 

  30. Wagner, J. D. M. et al. Moisture variability in the southwestern United States linked to abrupt glacial climate change. Nat. Geosci. 3, 110–113 (2010).

    Article  Google Scholar 

  31. Fletcher, W. J. et al. Millennial-scale variability during the last glacial in vegetation records from Europe. Quat. Sci. Rev. 29, 2839–2864 (2010).

    Article  Google Scholar 

  32. Birks, H. H. South to north: contrasting late-glacial and early-Holocene climate changes and vegetation responses between south and north Norway. Holocene 25, 37–52 (2015).

    Article  Google Scholar 

  33. Giesecke, T., Brewer, S., Finsinger, W., Leydet, M. & Bradshaw, R. H. W. Patterns and dynamics of European vegetation change over the last 15,000 years. J. Biogeogr. 44, 1441–1456 (2017).

    Article  Google Scholar 

  34. Novello, V. F. et al. A high-resolution history of the South American Monsoon from Last Glacial Maximum to the Holocene. Sci. Rep. 7, 44267 (2017).

    Article  Google Scholar 

  35. Jaccard, S. L. & Galbraith, E. D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nat. Geosci. 5, 151–156 (2012).

    Article  Google Scholar 

  36. Reichart, G. J., Lourens, L. J. & Zachariasse, W. J. Temporal variability in the northern Arabian Sea oxygen minimum zone (OMZ) during the last 225,000 years. Paleoceanography 13, 607–621 (1998).

    Article  Google Scholar 

  37. Praetorius, S. K. et al. North Pacific deglacial hypoxic events linked to abrupt ocean warming. Nature 527, 362–366 (2015).

    Article  Google Scholar 

  38. Davies, M. H. et al. The deglacial transition on the southeastern Alaska Margin: meltwater input, sea level rise, marine productivity, and sedimentary anoxia. Paleoceanography 26, PA2223 (2011).

  39. Abdul, N. A., Mortlock, R. A., Wright, J. D. & Fairbanks, R. G. Younger Dryas sea level and meltwater pulse 1B recorded in Barbados reef crest coral Acropora palmata. Paleoceanography 31, 330–344 (2016).

    Article  Google Scholar 

  40. Soulet, G. et al. Glacial hydrologic conditions in the Black Sea reconstructed using geochemical pore water profiles. Earth Planet. Sci. Lett. 296, 57–66 (2010).

    Article  Google Scholar 

  41. Yanchilina, A. G. et al. Compilation of geophysical, geochronological, and geochemical evidence indicates a rapid Mediterranean-derived submergence of the Black Sea’s shelf and subsequent substantial salinification in the early Holocene. Mar. Geol. 383, 14–34 (2017).

    Article  Google Scholar 

  42. Toucanne, S. et al. The first estimation of Fleuve Manche palaeoriver discharge during the last deglaciation: evidence for Fennoscandian ice sheet meltwater flow in the English Channel ca 20-18 ka ago. Earth Planet. Sci. Lett. 290, 459–473 (2010).

    Article  Google Scholar 

  43. Hanebuth, T., Stattegger, K. & Grootes, P. M. Rapid flooding of the Sunda Shelf: a late-glacial sea-level record. Science 288, 1033–1035 (2000).

    Article  Google Scholar 

  44. Andersen, K. K. et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).

    Article  Google Scholar 

  45. Steffen, W. et al. Trajectories of the Earth system in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).

    Article  Google Scholar 

  46. Buckley, B. M. et al. Climate as a contributing factor in the demise of Angkor, Cambodia. Proc. Natl Acad. Sci. USA 107, 6748–6752 (2010).

    Article  Google Scholar 

  47. Shuman, B. N. & Marsicek, J. The structure of Holocene climate change in mid-latitude North America. Quat. Sci. Rev. 141, 38–51 (2016).

    Article  Google Scholar 

  48. Alley, R. B. & Agustsdottir, A. M. The 8k event: cause and consequences of a major Holocene abrupt climate change. Quat. Sci. Rev. 24, 1123–1149 (2005).

    Article  Google Scholar 

  49. Tinner, W. & Lotter, A. F. Central European vegetation response to abrupt climate change at 8.2 ka. Geology 29, 551–554 (2001).

    Article  Google Scholar 

  50. Ellis, E. C. Anthropogenic transformation of the terrestrial biosphere. Philos. Trans. R. Soc. A 369, 1010–1035 (2011).

    Article  Google Scholar 

  51. Wang, Y. J. et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294, 2345–2348 (2001).

    Article  Google Scholar 

  52. Williams, J. W. & Burke, K. in Climate Change and Biodiversity (eds Lovejoy, T. & Hannah, L.) 128–141 (Yale Univ. Press, 2019).

  53. deMenocal, P. et al. Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quat. Sci. Rev. 19, 347–361 (2000).

    Article  Google Scholar 

  54. Gupta, A., Das, M. & Anderson, D. Solar influence on the Indian summer monsoon during the Holocene. Geophys. Res. Lett. 32, L17703 (2005).

  55. Buntgen, U. et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 ad. Nat. Geosci. 9, 231–236 (2016).

    Article  Google Scholar 

  56. Walker, M. et al. Formal subdivision of the holocene series/epoch: a summary. J. Geol. Soc. India 93, 135–141 (2019).

    Article  Google Scholar 

  57. Bradley, R. & Bakke, J. Is there evidence for a 4.2 ka BP event in the northern North Atlantic region? Clim. Past 15, 1665–1676 (2019).

    Article  Google Scholar 

  58. Butzer, K. W. Collapse, environment, and society. Proc. Natl Acad. Sci. USA 109, 3632–3639 (2012).

    Article  Google Scholar 

  59. Shanahan, T. M. et al. The time-transgressive termination of the African Humid Period. Nat. Geosci. 8, 140–144 (2015).

    Article  Google Scholar 

  60. Trauth, M. H. et al. Classifying past climate change in the Chew Bahir basin, southern Ethiopia, using recurrence quantification analysis. Clim. Dynam. 53, 2557–2572 (2019).

    Article  Google Scholar 

  61. Claussen, M., Bathiany, S., Brovkin, V. & Kleinen, T. Simulated climate-vegetation interaction in semi-arid regions affected by plant diversity. Nat. Geosci. 6, 954–958 (2013).

    Article  Google Scholar 

  62. Kropelin, S. et al. Climate-driven ecosystem succession in the Sahara: the past 6000 years. Science 320, 765–768 (2008).

    Article  Google Scholar 

  63. Yeakel, J. D. et al. Collapse of an ecological network in Ancient Egypt. Proc. Natl Acad. Sci. USA 111, 14472–14477 (2014).

    Article  Google Scholar 

  64. Kuper, R. & Kropelin, S. Climate-controlled Holocene occupation in the Sahara: motor of Africa’s evolution. Science 313, 803–807 (2006).

    Article  Google Scholar 

  65. Miao, X. D. et al. A 10,000 year record of dune activity, dust storms, and severe drought in the central Great Plains. Geology 35, 119–122 (2007).

    Article  Google Scholar 

  66. Williams, J. W., Shuman, B. & Bartlein, P. J. Rapid responses of the prairie-forest ecotone to early Holocene aridity in mid-continental North America. Glob. Planet. Change 66, 195–207 (2009).

    Article  Google Scholar 

  67. Williams, J. W., Blois, J. L. & Shuman, B. N. Extrinsic and intrinsic forcing of abrupt ecological change: case studies from the late Quaternary. J. Ecol. 99, 664–677 (2011).

    Article  Google Scholar 

  68. Umbanhowar, C. E., Camill, P., Geiss, C. E. & Teed, R. Asymmetric vegetation responses to mid-Holocene aridity at the prairie-forest ecotone in south-central Minnesota. Quat. Res. 66, 53–66 (2006).

    Article  Google Scholar 

  69. Williams, J. W., Shuman, B., Bartlein, P. J., Diffenbaugh, N. S. & Webb, T. Rapid, time-transgressive, and variable responses to early Holocene midcontinental drying in North America. Geology 38, 135–138 (2010).

    Article  Google Scholar 

  70. Shuman, B. Patterns, processes, and impacts of abrupt climate change in a warm world: the past 11,700 years. WIREs Clim. Change 3, 19–43 (2012).

    Article  Google Scholar 

  71. Bocinsky, R. K., Rush, J., Kintigh, K. W. & Kohler, T. A. Exploration and exploitation in the macrohistory of the pre-Hispanic Pueblo Southwest. Sci. Adv. 2, e1501532 (2016).

  72. Graybilll, D. A., Gregory, D. A., Funkhouser, G. S. & Nials, F. in Environmental Change and Human Adaptation in the Ancient American Southwest (eds Doyel, D. E. & Dean, J. S.) 69–123 (Univ. Utah Press, 2006).

  73. Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    Article  Google Scholar 

  74. Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).

    Article  Google Scholar 

  75. Wagner, T. J. W. & Eisenman, I. False alarms: how early warning signals falsely predict abrupt sea ice loss. Geophys. Res. Lett. 42, 10333–10341 (2015).

    Google Scholar 

  76. Boulton, C. A., Good, P. & Lenton, T. M. Early warning signals of simulated Amazon rainforest dieback. Theor. Ecol. 6, 373–384 (2013).

    Article  Google Scholar 

  77. Held, H. & Kleinen, T. Detection of climate system bifurcations by degenerate fingerprinting. Geophys. Res. Lett. 31, L23207 (2004).

  78. Boulton, C. A., Allison, L. C. & Lenton, T. M. Early warning signals of atlantic meridional overturning circulation collapse in a fully coupled climate model. Nat. Commun. 5, 5752 (2014).

  79. Ditlevsen, P. D. & Johnsen, S. J. Tipping points: early warning and wishful thinking. Geophys. Res. Lett. 37, L19703 (2010).

  80. Cimatoribus, A. A., Drijfhout, S. S., Livina, V. & van der Schrier, G. Dansgaard-Oeschger events: bifurcation points in the climate system. Clim. Past 9, 323–333 (2013).

    Article  Google Scholar 

  81. Thomas, Z. A. et al. Early warnings and missed alarms for abrupt monsoon transitions. Clim. Past 11, 1621–1633 (2015).

    Article  Google Scholar 

  82. Stegner, M. A., Ratajczak, Z., Carpenter, S. R. & Williams, J. W. Inferring critical transitions in paleoecological time series with irregular sampling and variable time-averaging. Quat. Sci. Rev. 207, 49–63 (2019).

    Article  Google Scholar 

  83. Litzow, M. A., Urban, J. D. & Laurel, B. J. Increased spatial variance accompanies reorganization of two continental shelf ecosystems. Ecol. Appl. 18, 1331–1337 (2008).

    Article  Google Scholar 

  84. Bathiany, S., Claussen, M. & Fraedrich, K. Detecting hotspots of atmosphere-vegetation interaction via slowing down. Part 1: a stochastic approach. Earth Syst. Dynam. 4, 63–78 (2013).

    Article  Google Scholar 

  85. Weinans, E. et al. Finding the direction of lowest resilience inmultivariate complex systems. J. R. Soc. Interface 16, 20190629 (2019).

    Article  Google Scholar 

  86. Feng, Q. Y., Viebahn, J. P. & Dijkstra, H. A. Deep ocean early warning signals of an Atlantic MOC collapse. Geophys. Res. Lett. 41, 6009–6015 (2014).

    Article  Google Scholar 

  87. Praetorius, S. K. & Mix, A. C. Synchronization of North Pacific and Greenland climates preceded abrupt deglacial warming. Science 345, 444–448 (2014).

    Article  Google Scholar 

  88. Guttal, V. & Jayaprakash, C. Spatial variance and spatial skewness: leading indicators of regime shifts in spatial ecological systems. Theor. Ecol. 2, 3–12 (2009).

    Article  Google Scholar 

  89. Rietkerk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).

    Article  Google Scholar 

  90. Dekker, M. M., von der Heydt, A. S. & Dijkstra, H. A. Cascading transitions in the climate system. Earth Syst. Dynam. 9, 1243–1260 (2018).

    Article  Google Scholar 

  91. Downey, S. S., Haas, W. R. & Shennan, S. J. European Neolithic societies showed early warning signals of population collapse. Proc. Natl Acad. Sci. USA 113, 9751–9756 (2016).

    Article  Google Scholar 

  92. Spielmann, K. A., Peeples, M. A., Glowacki, D. M. & Dugmore, A. Early warning signals of social transformation: a case study from the US Southwest. PLoS ONE 11, e0163685 (2016).

  93. Hsieh, C. H. et al. Fishing elevates variability in the abundance of exploited species. Nature 443, 859–862 (2006).

    Article  Google Scholar 

  94. Cailleret, M. et al. Early-warning signals of individual tree mortality based on annual radial growth. Front. Plant Sci. 9, 1964 (2019).

  95. Drake, J. M. & Griffen, B. D. Early warning signals of extinction in deteriorating environments. Nature 467, 456–459 (2010).

    Article  Google Scholar 

  96. Klose, A. K., Karle, V., Winkelmann, R. & Donges, J. F. Emergence of cascading dynamics in interacting tipping elements of ecology and climate. R. Soc. Open Sci. 7, 200599 (2020).

    Article  Google Scholar 

  97. Bathiany, S., Hidding, J. & Scheffer, M. Edge detection reveals abrupt and extreme climate events. J. Clim. 33, 6399–6421 (2020).

    Article  Google Scholar 

  98. Flach, M. et al. Multivariate anomaly detection for Earth observations: a comparison of algorithms and feature extraction techniques. Earth Syst. Dynam. 8, 677–696 (2017).

    Article  Google Scholar 

  99. Reeves, J., Chen, J., Wang, X. L. L., Lund, R. & Lu, Q. Q. A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteorol. Climatol. 46, 900–915 (2007).

    Article  Google Scholar 

  100. Flato, G. M. Earth system models: an overview. WIREs Clim. Change 2, 783–800 (2011).

    Article  Google Scholar 

  101. Drijfhout, S. et al. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl Acad. Sci. USA 112, E5777–E5786 (2015).

    Article  Google Scholar 

  102. Dallmeyer, A., Claussen, M., Lorenz, S. J. & Shanahan, T. The end of the African humid period as seen by a transient comprehensive Earth system model simulation of the last 8000 years. Clim. Past 16, 117–140 (2020).

    Article  Google Scholar 

  103. Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This paper is an outcome of the workshop ‘Abrupt changes, thresholds, and tipping points in Earth history and future implications’ held in Hamburg, Germany, in November 2018, which most of the authors attended. The workshop was officially endorsed by Analysis, Integration and Modeling of the Earth System (AIMES) and Past Global Changes (PAGES) of Future Earth and received financial support from PAGES and the Max Planck Society. We thank N. Noreiks for assistance with Fig. 3. F.L. acknowledges funding from ANID/MSI/Millennium Nucleus Paleoclimate under grant number ANID/FONDAP/15110009 and grant number ANID/FONDECYT/1191223. J.M. was supported in part by the US NSF. J.W.W. acknowledges funding from NSF grant number 1855781 and WARF. V.B., T.K. and M. Claussen acknowledge support from the German Federal Ministry of Education and Research (BMBF) through the PalMod project. J.F.D. was supported by the Leibniz Association project DominoES and the European Research Council Advanced Grant project ERA (Earth Resilience in the Anthropocene; grant ERC-2016-ADG-743080

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the literature assessment. V.B., S.B., J.W.W., E.B. and T.M.L. developed the concept and compiled the paper with support from all co-authors. All co-authors contributed to the discussion of the manuscript.

Corresponding author

Correspondence to Victor Brovkin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Geoscience thanks Cathy Whitlock and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1, Table 1, discussion and references.

Source data

Source Data Fig. 3

Time-series data used for Fig. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brovkin, V., Brook, E., Williams, J.W. et al. Past abrupt changes, tipping points and cascading impacts in the Earth system. Nat. Geosci. 14, 550–558 (2021). https://doi.org/10.1038/s41561-021-00790-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00790-5

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology