Human domination of the global water cycle absent from depictions and perceptions

Abstract

Human water use, climate change and land conversion have created a water crisis for billions of individuals and many ecosystems worldwide. Global water stocks and fluxes are estimated empirically and with computer models, but this information is conveyed to policymakers and researchers through water cycle diagrams. Here we compiled a synthesis of the global water cycle, which we compared with 464 water cycle diagrams from around the world. Although human freshwater appropriation now equals half of global river discharge, only 15% of the water cycle diagrams depicted human interaction with water. Only 2% of the diagrams showed climate change or water pollution—two of the central causes of the global water crisis—which effectively conveys a false sense of water security. A single catchment was depicted in 95% of the diagrams, which precludes the representation of teleconnections such as ocean–land interactions and continental moisture recycling. These inaccuracies correspond with specific dimensions of water mismanagement, which suggest that flaws in water diagrams reflect and reinforce the misunderstanding of global hydrology by policymakers, researchers and the public. Correct depictions of the water cycle will not solve the global water crisis, but reconceiving this symbol is an important step towards equitable water governance, sustainable development and planetary thinking in the Anthropocene.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Pools and fluxes in the global hydrological cycle.
Fig. 2: Pools and fluxes represented in water cycle diagrams.
Fig. 3: Diagram of the global hydrological cycle in the Anthropocene.
Fig. 4: Some consequences of human interference with the water cycle.

Data availability

The meta-analysis of global water pools and fluxes is included in Supplementary Table 1. The extracted data from all the diagrams is available in the Supplementary Database 1. The full set of analysed images cannot be published here because of copyright considerations, but all images are available from the corresponding author upon request.

References

  1. 1.

    Cardak, O. Science students’ misconceptions of the water cycle according to their drawings. J. Appl. Sci. 9, 865–873 (2009).

    Article  Google Scholar 

  2. 2.

    Ben-zvi-Assarf, O. & Orion, N. A study of junior high students’ perceptions of the water cycle. J. Geosci. Educ. 53, 366–373 (2005).

    Article  Google Scholar 

  3. 3.

    Ellison, D., N. Futter, M. & Bishop, K. On the forest cover–water yield debate: from demand- to supply-side thinking. Glob. Change Biol. 18, 806–820 (2012).

    Article  Google Scholar 

  4. 4.

    Schmidt, J. J. Historicizing the hydrosocial cycle. Water Altern. 7, 220–234 (2014).

    Google Scholar 

  5. 5.

    Fandel, C. A., Breshears, D. D. & McMahon, E. E. Implicit assumptions of conceptual diagrams in environmental science and best practices for their illustration. Ecosphere 9, e02072 (2018).

    Article  Google Scholar 

  6. 6.

    Linton, J. Is the hydrologic cycle sustainable? A historical–geographical critique of a modern concept. Ann. Assoc. Am. Geogr. 98, 630–649 (2008).

    Article  Google Scholar 

  7. 7.

    Clark, A. C. & Wiebe, E. N. Scientific visualization for secondary and post-secondary schools. J. Technol. Stud. 26, 24–32 (2000).

    Article  Google Scholar 

  8. 8.

    Harold, J., Lorenzoni, I., Shipley, T. F. & Coventry, K. R. Cognitive and psychological science insights to improve climate change data visualization. Nat. Clim. Change 6, 1080–1089 (2016).

    Article  Google Scholar 

  9. 9.

    Richey, A. S. et al. Uncertainty in global groundwater storage estimates in a total groundwater stress framework. Water Resour. Res. 51, 5198–5216 (2015).

    Article  Google Scholar 

  10. 10.

    Rockström, J., Falkenmark, M., Lannerstad, M. & Karlberg, L. The planetary water drama: dual task of feeding humanity and curbing climate change. Geophys. Res. Lett. 39, L15401 (2012).

    Article  Google Scholar 

  11. 11.

    Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).

    Article  Google Scholar 

  12. 12.

    Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).

    Article  Google Scholar 

  13. 13.

    Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    Article  Google Scholar 

  14. 14.

    Heathwaite, A. L. Multiple stressors on water availability at global to catchment scales: understanding human impact on nutrient cycles to protect water quality and water availability in the long term. Freshw. Biol. 55, 241–257 (2010).

    Article  Google Scholar 

  15. 15.

    Schyns, J. F., Hoekstra, A. Y., Booij, M. J., Hogeboom, R. J. & Mekonnen, M. M. Limits to the world’s green water resources for food, feed, fiber, timber and bioenergy. Proc. Natl Acad. Sci. USA 116, 4893–4898 (2019).

    Article  Google Scholar 

  16. 16.

    Ellis, E. C., Klein Goldewijk, K., Siebert, S., Lightman, D. & Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19, 586–606 (2010).

    Google Scholar 

  17. 17.

    Wang-Erlandsson, L. et al. Remote land use impacts on river flows through atmospheric teleconnections. Hydrol. Earth Syst. Sci. 22, 4311–4328 (2018).

    Article  Google Scholar 

  18. 18.

    Falkenmark, M., Wang-Erlandsson, L. & Rockström, J. Understanding of water resilience in the Anthropocene. J. Hydrol. X 2, 100009 (2019).

    Article  Google Scholar 

  19. 19.

    Boers, N., Marwan, N., Barbosa, H. M. J. & Kurths, J. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 7, 41489 (2017).

    Article  Google Scholar 

  20. 20.

    Durack, P. J., Wijffels, S. E. & Matear, R. J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336, 455–458 (2012).

    Article  Google Scholar 

  21. 21.

    Haddeland, I. et al. Global water resources affected by human interventions and climate change. Proc. Natl Acad. Sci. USA 111, 3251–3256 (2014).

    Article  Google Scholar 

  22. 22.

    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).

    Article  Google Scholar 

  23. 23.

    Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).

    Article  Google Scholar 

  24. 24.

    Van Loon, A. F. et al. Drought in the Anthropocene. Nat. Geosci. 9, 89–91 (2016).

    Article  Google Scholar 

  25. 25.

    Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945–948 (2014).

    Article  Google Scholar 

  26. 26.

    Creed, I. F. et al. Enhancing protection for vulnerable waters. Nat. Geosci. 10, 809–815 (2017).

    Article  Google Scholar 

  27. 27.

    Wurtsbaugh, W. A. et al. Decline of the world’s saline lakes. Nat. Geosci. 10, 816–821 (2017).

    Article  Google Scholar 

  28. 28.

    Ellison, D. et al. Trees, forests and water: cool insights for a hot world. Glob. Environ. Change 43, 51–61 (2017).

    Article  Google Scholar 

  29. 29.

    Falkenmark, M. Society’s interaction with the water cycle: a conceptual framework for a more holistic approach. Hydrol. Sci. J. 42, 451–466 (1997).

    Article  Google Scholar 

  30. 30.

    Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).

    Article  Google Scholar 

  31. 31.

    Linton, J. Modern water and its discontents: a history of hydrosocial renewal. WIREs Water 1, 111–120 (2014).

    Article  Google Scholar 

  32. 32.

    Savenije, H. H. G., Hoekstra, A. Y. & van der Zaag, P. Evolving water science in the Anthropocene. Hydrol. Earth Syst. Sci. 18, 319–332 (2014).

    Article  Google Scholar 

  33. 33.

    Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E. & Cardenas, M. B. The global volume and distribution of modern groundwater. Nat. Geosci. 9, 161–167 (2016).

    Article  Google Scholar 

  34. 34.

    Bierkens, M. F. P. Global hydrology 2015: state, trends, and directions. Water Resour. Res. 51, 4923–4947 (2015).

    Article  Google Scholar 

  35. 35.

    Trenberth, K. E., Smith, L., Qian, T., Dai, A. & Fasullo, J. Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeorol. 8, 758–769 (2007).

    Article  Google Scholar 

  36. 36.

    Chao, B. F., Wu, Y. H. & Li, Y. S. Impact of artificial reservoir water impoundment on global sea level. Science 320, 212–214 (2008).

    Article  Google Scholar 

  37. 37.

    Döll, P. Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environ. Res. Lett. 4, 035006 (2009).

    Article  Google Scholar 

  38. 38.

    Jasechko, S. et al. Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination. Nat. Geosci. 10, 425–429 (2017).

    Article  Google Scholar 

  39. 39.

    Wang, J. et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 11, 926–932 (2018).

    Article  Google Scholar 

  40. 40.

    Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).

    Article  Google Scholar 

  41. 41.

    Alley, W. M. Another water budget myth: the significance of recoverable ground water in storage. Ground Water 45, 251–251 (2007).

    Article  Google Scholar 

  42. 42.

    Hanasaki, N., Inuzuka, T., Kanae, S. & Oki, T. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J. Hydrol. 384, 232–244 (2010).

    Article  Google Scholar 

  43. 43.

    Hogeboom, R. J., Knook, L. & Hoekstra, A. Y. The blue water footprint of the world’s artificial reservoirs for hydroelectricity, irrigation, residential and industrial water supply, flood protection, fishing and recreation. Adv. Water Resour. 113, 285–294 (2018).

    Article  Google Scholar 

  44. 44.

    Radinsky, J. et al. How planners and stakeholders learn with visualization tools: using learning sciences methods to examine planning processes. J. Environ. Plan. Manag. 60, 1296–1323 (2017).

    Article  Google Scholar 

  45. 45.

    Wiek, A. & Larson, K. L. Water, people, and sustainability—a systems framework for analyzing and assessing water governance regimes. Water Resour. Manag. 26, 3153–3171 (2012).

    Article  Google Scholar 

  46. 46.

    Horton, R. E. The field, scope, and status of the science of hydrology. Eos Trans. AGU 12, 189–202 (1931).

    Article  Google Scholar 

  47. 47.

    Hagerhall, C. M., Purcell, T. & Taylor, R. Fractal dimension of landscape silhouette outlines as a predictor of landscape preference. J. Environ. Psychol. 24, 247–255 (2004).

    Article  Google Scholar 

  48. 48.

    Bishop, K. et al. Nature as the ‘natural’ goal for water management: a conversation. Ambio 38, 209–214 (2009).

    Article  Google Scholar 

  49. 49.

    Linton, J. & Budds, J. The hydrosocial cycle: defining and mobilizing a relational-dialectical approach to water. Geoforum 57, 170–180 (2014).

    Article  Google Scholar 

  50. 50.

    Bennett, B. M. & Barton, G. A. The enduring link between forest cover and rainfall: a historical perspective on science and policy discussions. For. Ecosyst. 5, 5 (2018).

    Article  Google Scholar 

  51. 51.

    Keys, P. W., Wang-Erlandsson, L., Gordon, L. J., Galaz, V. & Ebbesson, J. Approaching moisture recycling governance. Glob. Environ. Change 45, 15–23 (2017).

    Article  Google Scholar 

  52. 52.

    Dieter, C. A. et al. Estimated Use of Water in the United States in 2015 (US Geological Survey, 2018).

  53. 53.

    French, J. R. et al. Precipitation formation from orographic cloud seeding. Proc. Natl Acad. Sci. USA 115, 1168–1173 (2018).

    Article  Google Scholar 

  54. 54.

    Gordon, L. J. et al. Human modification of global water vapor flows from the land surface. Proc. Natl Acad. Sci. USA 102, 7612–7617 (2005).

    Article  Google Scholar 

  55. 55.

    Kundzewicz, Z. W. & Kaczmarek, Z. Coping with hydrological extremes. Water Int. 25, 66–75 (2000).

    Article  Google Scholar 

  56. 56.

    Grey, D. & Sadoff, C. W. Sink or swim? Water security for growth and development. Water Policy 9, 545–571 (2007).

    Article  Google Scholar 

  57. 57.

    Wilby, R. L. et al. Evidence needed to manage freshwater ecosystems in a changing climate: turning adaptation principles into practice. Sci. Total Environ. 408, 4150–4164 (2010).

    Article  Google Scholar 

  58. 58.

    Prudhomme, C. et al. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc. Natl Acad. Sci. USA 111, 3262–3267 (2014).

    Article  Google Scholar 

  59. 59.

    Rodell, M. et al. The observed state of the water cycle in the early twenty-first century. J. Clim. 28, 8289–8318 (2015).

    Article  Google Scholar 

  60. 60.

    Kümmerer, K., Dionysiou, D. D., Olsson, O. & Fatta-Kassinos, D. A path to clean water. Science 361, 222–224 (2018).

    Article  Google Scholar 

  61. 61.

    Abbott, B. W. et al. Unexpected spatial stability of water chemistry in headwater stream networks. Ecol. Lett. 21, 296–308 (2018).

    Article  Google Scholar 

  62. 62.

    Bormann, F. H. & Likens, G. E. Nutrient Cycling. Science 155, 424–429 (1967).

    Article  Google Scholar 

  63. 63.

    Müller, B. et al. How polluted is the Yangtze river? Water quality downstream from the Three Gorges Dam. Sci. Total Environ. 402, 232–247 (2008).

    Article  Google Scholar 

  64. 64.

    Moatar, F., Abbott, B. W., Minaudo, C., Curie, F. & Pinay, G. Elemental properties, hydrology, and biology interact to shape concentration–discharge curves for carbon, nutrients, sediment, and major ions. Water Resour. Res. 53, 1270–1287 (2017).

    Article  Google Scholar 

  65. 65.

    Salama, R. B., Otto, C. J. & Fitzpatrick, R. W. Contributions of groundwater conditions to soil and water salinization. Hydrogeol. J. 7, 46–64 (1999).

    Article  Google Scholar 

  66. 66.

    CreedI. F.. & van NoordwijkM.. Forest and Water on a Changing Planet: Vulnerability. Adaptation and Governance Opportunities (2018).

  67. 67.

    Kastens, K. A. & Manduca, C. A. Earth and Mind II: A Synthesis of Research on Thinking and Learning in the Geosciences (Geological Society of America, 2012).

  68. 68.

    Vekiri, I. What is the value of graphical displays in learning? Educ. Psychol. Rev. 14, 261–312 (2002).

    Article  Google Scholar 

  69. 69.

    Gunckel, K. L., Covitt, B. A., Salinas, I. & Anderson, C. W. A learning progression for water in socio-ecological systems. J. Res. Sci. Teach. 49, 843–868 (2012).

    Article  Google Scholar 

  70. 70.

    Rumore, D., Schenk, T. & Susskind, L. Role-play simulations for climate change adaptation education and engagement. Nat. Clim. Change 6, 745–750 (2016).

    Article  Google Scholar 

  71. 71.

    Su, C.-H. & Cheng, C.-H. A mobile gamification learning system for improving the learning motivation and achievements. J. Comput. Assist. Learn. 31, 268–286 (2015).

    Article  Google Scholar 

  72. 72.

    Vörösmarty, C. et al. Humans transforming the global water system. Eos Trans. AGU 85, 509–514 (2004).

    Article  Google Scholar 

  73. 73.

    Falkenmark, M. Heading towards basin-level hydrosolidarity goal for land/water/ecosystem coordination. Water Environ. 12, 178 (2005).

    Google Scholar 

  74. 74.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis: (Springer, 2009).

  75. 75.

    Jasechko, S., Kirchner, J. W., Welker, J. M. & McDonnell, J. J. Substantial proportion of global streamflow less than three months old. Nat. Geosci. 9, 126–129 (2016).

    Article  Google Scholar 

  76. 76.

    Lvovitch, M. I. The global water balance. Eos Trans. AGU 54, 28–53 (1973).

    Article  Google Scholar 

  77. 77.

    Gombrich, E. H. Moment and movement in art. J. Warbg. Court. Inst. 27, 293–306 (1964).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this study was provided by the Department of Plant and Wildlife Sciences and College of Life Sciences at Brigham Young University and by the European Union’s Seventh Framework Program for research, technological development and demonstration under grant agreement no. 607150 (FP7-PEOPLE-2013-ITN–INTERFACES—Ecohydrological interfaces as critical hotspots for transformations of ecosystem exchange fluxes and biogeochemical cycling). D. Conner created the template for the water cycle used in Figs. 3 and 4. We thank T. Burt, S. Abbott, J. Howe and C. Ash for input on the manuscript and we thank S. Chowdhury for assistance with diagram analysis.

Author information

Affiliations

Authors

Contributions

The concept for this paper emerged during discussion among B.W.A., K.B., G.P., T.K., D.M.H., S.K. and J.P.Z. in 2015. S.P., S.E.G., T.K., J.M., O.U., M.C., R.J.F., B.W.A. and M.B. downloaded and analysed the diagrams. B.W.A. and C.M. managed data and performed statistical analyses. B.W.A. wrote the manuscript with input from all the co-authors.

Corresponding author

Correspondence to Benjamin W. Abbott.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables and Figures

Water Diagram Database

Water Diagram Database

New diagrams

New diagrams (PDF and PPT)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abbott, B.W., Bishop, K., Zarnetske, J.P. et al. Human domination of the global water cycle absent from depictions and perceptions. Nat. Geosci. 12, 533–540 (2019). https://doi.org/10.1038/s41561-019-0374-y

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing