Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Transient temperature asymmetry between hemispheres in the Palaeogene Atlantic Ocean

Abstract

During the Late Palaeogene between ~40 and 23 million years ago (Ma), Earth transitioned from a warm non-glaciated climate state and developed large dynamic ice sheets on Antarctica. This transition is largely inferred from the deep-sea oxygen isotope record because records from independent temperature proxies are sparse. Here we present a 25-million-year-long alkenone-based record of surface temperature change from the North Atlantic Ocean. Our long temperature record documents peak warmth (~29 °C) during the middle Eocene, a slow overall decline to the Eocene/Oligocene transition (EOT, ~34 Ma) and high-amplitude variability (between ~28 and 24 °C) during the Oligo–Miocene. The overall structure of the record is similar to that of the deep-sea record, but a distinct anomaly is also evident. We find no evidence of surface cooling in the North Atlantic directly coinciding with the EOT when Antarctica first became cold enough to sustain large ice sheets and subantarctic waters cooled substantially. Surface ocean cooling during the EOT was therefore strongly asymmetric between hemispheres. This transient thermal decoupling of the North Atlantic Ocean from the southern high latitudes suggests that Antarctic glaciation triggered changes in ocean circulation-driven heat transport and influenced the far-field climate response.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Modern and palaeo-locations of IODP Site U1404, superimposed on modern mean annual sea surface temperature (SST) field in the North Atlantic.
Fig. 2: Late Palaeogene records of alkenone temperature and content from Site U1404.
Fig. 3: Detailed view of δ18O and relative surface ocean temperature changes across the EOT.

References

  1. Liebrand, D. et al. Evolution of the early Antarctic ice ages. Proc. Natl Acad. Sci. USA 114, 3867–3872 (2017).

    Article  Google Scholar 

  2. Zachos, J. C., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    Article  Google Scholar 

  3. Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E. & Miller, K. G. Ocean overturning since the Late Cretaceous: inferences from a new benthic foraminiferal isotope compilation. Paleoceanography 24, PA4216 (2009).

    Article  Google Scholar 

  4. Pälike, H. et al. The heartbeat of the Oligocene climate system. Science 314, 1894–1898 (2006).

    Article  Google Scholar 

  5. Miller, K. G., Wright, J. D. & Fairbanks, R. G. Unlocking the ice house: Oligocene–Miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res. 96, 6829–6848 (1991).

    Article  Google Scholar 

  6. Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H. & Backman, J. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433, 53–57 (2005).

    Article  Google Scholar 

  7. Pearson, P. N., Foster, G. L. & Wade, B. S. Atmospheric carbon dioxide through the Eocene–Oligocene climate transition. Nature 461, 1110–1113 (2009).

    Article  Google Scholar 

  8. Pagani, M. et al. The role of carbon dioxide during the onset of Antarctic glaciation. Science 334, 1261–1264 (2011).

    Article  Google Scholar 

  9. Liu, Z. et al. Global cooling during the Eocene-Oligocene climate transition. Science 323, 1187–1190 (2009).

    Article  Google Scholar 

  10. Hyeong, K., Huroda, J., Seo, I. & Wilson, P. A. Response of the Pacific inter-tropical convergence zone to global cooling and initiation of Antarctic glaciation across the Eocene Oligocene Transition. Sci. Rep. 6, 30647 (2016).

    Article  Google Scholar 

  11. Elsworth, G., Galbraith, E., Halverson, G. & Yang, S. Enhanced weathering and CO2 drawdown caused by latest Eocene strengthening of the Atlantic meridional overturning circulation. Nat. Geosci. 10, 213–216 (2017).

    Article  Google Scholar 

  12. Abelson, M. & Erez, L. The onset of modern-like Atlantic meridional overturning circulation at the Eocene-Oligocene transition: evidence, causes, and possible implications for global cooling. Geochem. Geophys. Geosyst. 18, 2177–2199 (2017).

    Article  Google Scholar 

  13. Coxall, H. K. et al. Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation. Nat. Geosci. 11, 190–196 (2018).

    Article  Google Scholar 

  14. Scher, H. D. et al. Onset of Antarctic Circumpolar Current 30 million years ago as Tasmanian Gateway aligned with westerlies. Nature 523, 580–583 (2015).

    Article  Google Scholar 

  15. Katz, M. E. et al. Impact of Antarctic circumpolar current development on Late Paleogene ocean structure. Science 332, 1076–1079 (2011).

    Article  Google Scholar 

  16. Norris, R. D. et al. Marine ecosystem responses to Cenozoic global change. Science 341, 492–498 (2013).

    Article  Google Scholar 

  17. Lear, C. H., Elderfield, H. & Wilson, P. A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287, 269–272 (2000).

    Article  Google Scholar 

  18. Kennett, J. P. Cenozoic evolution of Antarctic glaciations, the circum-Antarctic ocean and their impact on global paleoceanography. J. Geophys. Res. 82, 3843–3860 (1977).

    Article  Google Scholar 

  19. DeConto, R. M. & Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421, 245–249 (2003).

    Article  Google Scholar 

  20. Tremblin, M., Hermoso, M. & Minoletti, F. Equatorial heat accumulation as a long-term trigger of permanent Antarctic ice sheets during the Cenozoic. Proc. Natl Acad. Sci. USA 113, 11782–11787 (2016).

    Article  Google Scholar 

  21. Goldner, A., Herold, N. & Huber, M. Antarctic glaciation caused ocean circulation changes at the Eocene–Oligocene transition. Nature 511, 574–577 (2014).

    Article  Google Scholar 

  22. Miller, K. G. & Tucholke, B. E. in Structure and Development of the Greenland-Scotland Ridge (eds Bott, M. H. P., Saxov, S., Talwani, M. & Thiede, J.) 549–589 (Plenum, New York, 1983).

  23. Zanazzi, A., Kohn, M. J., MacFadden, B. J. & Terry, D. O. Large temperature drop across the Eocene-Oligocene transition in central North America. Nature 445, 639–642 (2007).

    Article  Google Scholar 

  24. Schouten, S. et al. Onset of long-term cooling of Greenland near the Eocene-Oligocene boundary as revealed by branched tetraether lipids. Geology 36, 147–150 (2008).

    Article  Google Scholar 

  25. Expedition 342 Scientists. Integrated Ocean Drilling Program Expedition 342 Preliminary Report: Paleogene Newfoundland Sediment Drifts (IODP, 2012); https://doi.org/10.2204/iodp.pr.342.2012

  26. Vellinga, M. & Wood, R. A. Impacts of thermohaline circulation shutdown in the twenty-first century. Climatic Change 91, 43–63 (2008).

    Article  Google Scholar 

  27. Stouffer, R. J. et al. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Clim. 19, 1365–1387 (2006).

    Article  Google Scholar 

  28. Matthews, K. J. et al. Global plate boundary evolution and kinematics since the late Paleozoic. Global Planet. Change 146, 226–250 (2016).

    Article  Google Scholar 

  29. Weller, P. & Stein, R. Paleogene biomarker records from the central Arctic Ocean (Integrated Ocean Drilling Program Expedition 302): organic carbon sources, anoxia, and sea surface temperature. Paleoceanography 23, PA1S17 (2008).

    Article  Google Scholar 

  30. Bijl, P. K. et al. Transient middle Eocene atmospheric CO2 and temperature variations. Science 330, 819–821 (2010).

    Article  Google Scholar 

  31. Plancq, J., Mattioli, E., Pittet, B., Simon, L. & Grossi, V. Productivity and sea-surface temperature changes recorded during the late Eocene-early Oligocene at DSDP Site 511 (South Atlantic). Palaeogeogr. Palaeoclimatol. Palaeoecol. 407, 34–44 (2014).

    Article  Google Scholar 

  32. Conte, M. H. et al. Global temperature calibration of the alkenone unsaturation index (UK’ 37) in surface waters and comparison with surface sediments. Geochem. Geophys. Geosyst. 7, Q02005 (2006).

    Article  Google Scholar 

  33. Palter, J. B., Lozier, M. S. & Barber, R. T. The effect of advection on the nutrient reservoir in the North Atlantic subtropical gyre. Nature 437, 687–692 (2005).

    Article  Google Scholar 

  34. Bijl, P. K. et al. Early Palaeogene temperature evolution of the southwest Pacific Ocean. Nature 461, 776–779 (2009).

    Article  Google Scholar 

  35. Zachos, J. C., Stott, L. D. & Lohmann, K. C. Evolution of early Cenozoic marine temperatures. Paleoceanography 9, 353–387 (1994).

    Article  Google Scholar 

  36. Bernard, S., Daval, D., Ackerer, P., Pont, S. & Meibom, A. Burial-induced oxygen-isotope re-equilibration of fossil foraminifera explains ocean paleotemperature paradoxes. Nat. Commun. 8, 1134 (2017).

    Article  Google Scholar 

  37. Stap, L. B., van de Wal, R. S. W., de Boer, B., Bintanja, R. & Lourens, L. The influence of ice sheets on temperature during the past 38 million years inferred from a one-dimensional ice sheet–climate model. Clim. Past. 13, 1243–1257 (2017).

    Article  Google Scholar 

  38. Pound, M. J. & Salzmann, U. Heterogeneity in global vegetation and terrestrial climate change during the late Eocene to early Oligocene transition. Sci. Rep. 7, 43386 (2017).

    Article  Google Scholar 

  39. Yang, S., Galbraith, E. & Palter, J. Coupled climate impacts of the Drake Passage and the Panama Seaway. Clim. Dyn. 43, 37–52 (2014).

    Article  Google Scholar 

  40. Ladant, J.-B., Donnadieu, Y., Bopp, L., Lear, C. H. & Wilson, P. A. Meridional contrasts in productivity changes driven by the opening of Drake Passage. Paleoceanogr. Paleoclimatol. 33, 302–317 (2018).

    Article  Google Scholar 

  41. Hutchinson, D. K. et al. Climate sensitivity and meridional overturning circulation in the late Eocene using GFDL CM2.1. Clim. Past 14, 789–810 (2018).

    Article  Google Scholar 

  42. Norris, R. D. et al. Site U1404. In Proc. Integrated Ocean Drilling Program (eds Norris, R. D., Wilson, P. A., Blum, P. & Expedition 342 Scientists) Vol. 342 (Integrated Ocean Drilling Program, 2014); https://doi.org/10.2204/iodp.proc.342.105.2014

  43. Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).

    Google Scholar 

  44. Gradstein, F. M., Ogg, J. G., Schmitz, M. & Ogg, G. The Geologic Time Scale 2012 (Elsevier, Amsterdam, 2012).

  45. Prahl, F. G., Muehlhausen, L. A. & Zahnle, D. L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim. Cosmochim. Acta 52, 2303–2310 (1988).

    Article  Google Scholar 

  46. Villanueva, J. & Grimalt, J. O. Gas chromatographic tuning of the UK’ 37 paleothermometer. Anal. Chem. 69, 3329–3332 (1997).

    Article  Google Scholar 

  47. Brassell, S. C., Eglinton, G., Marlowe, I. T., Pflaumann, U. & Sarnthein, M. Molecular stratigraphy: a new tool for climatic assessment. Nature 320, 129–133 (1986).

    Article  Google Scholar 

  48. Lawrence, K. T., Liu, Z. & Herbert, T. D. Evolution of the eastern tropical Pacific through Plio-Pleistocene glaciation. Science 312, 79–83 (2006).

    Article  Google Scholar 

  49. Müller, P. J., Kirst, G., Rohland, G., von Storch, I. & Rosell-Melé, A. Calibration of the alkenone paleotemperature index UK’ 37 based on core-tops from the eastern South Atlantic and the global ocean (60°N–60°S). Geochim. Cosmochim. Acta 62, 1757–1772 (1998).

    Article  Google Scholar 

  50. Hohbein, M. W., Sexton, P. F. & Cartwright, J. A. Onset of North Atlantic Deep Water production coincident with inception of the Cenozoic global cooling trend. Geology 40, 255–258 (2012).

    Article  Google Scholar 

  51. Abelson, M., Agnon, A. & Almogi-Labin, A. Indications for control of the Iceland plume on the Eocene-Oligocene “greenhouse-icehouse” climate transition. Earth Planet. Sci. Lett. 265, 33–48 (2008).

    Article  Google Scholar 

  52. Liu, W. et al. Late Miocene episodic lakes in the arid Tarim Basin, western China. Proc. Natl Acad. Sci. USA 111, 16292–16296 (2014).

    Article  Google Scholar 

  53. Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270 (2012).

    Article  Google Scholar 

  54. Locarnini, R. A. et al. World Ocean Atlas 2013, Volume 1: Temperature. In NOAA Atlas NESDIS 73 (eds Levitus, S. & Mishonov, A.) Vol. 73 (National Oceanographical Data Center, Silver Spring, 2013).

  55. Schlitzer, R. Data analysis and visualization with Ocean Data View. CMOS Bull. SCMO 43, 9–13 (2015).

    Google Scholar 

Download references

Acknowledgements

We dedicate this contribution to M. Pagani. This research used samples provided by the Integrated Ocean Drilling Program (IODP), which is sponsored by the US National Science Foundation and participating countries under management of Joint Oceanographic Institutions, Inc. We thank the scientists, technicians and support staff of IODP Expedition 342, IODP China and IODP UK for support. This research was supported by National Key Research and Development Program of China (2016YFE0109500), National Natural Science Foundation of China (41420104008), Chinese Academy of Sciences (QYZDY-SSW-DQC001, ZDBS-SSW-DQC001) (to W.L and Z.L.), Hong Kong Research Grant Council Grant 17303614 (to Z.L.), UK Natural Environment Research Council (NERC) Grant NE/L007452/1 (to S.M.B), NERC Grant NE/K014137/1 (to P.A.W.) and a Royal Society Wolfson award (to P.A.W.). We thank H. Coxall for a thorough and constructive review.

Author information

Authors and Affiliations

Authors

Contributions

P.A.W. and Z.L. participated in IODP Expedition 342 in seagoing capacities. Z.L., S.M.B and P.A.W. conceived the idea of generating a Late Palaeogene temperature record. Y.H. and Y.J. performed alkenone analysis while H.W. and W.L. completed carbonate oxygen isotope work. Z.L. and P.A.W. led the writing of the manuscript with intellectual contributions from all co-authors.

Corresponding authors

Correspondence to Zhonghui Liu or Paul A. Wilson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., He, Y., Jiang, Y. et al. Transient temperature asymmetry between hemispheres in the Palaeogene Atlantic Ocean. Nature Geosci 11, 656–660 (2018). https://doi.org/10.1038/s41561-018-0182-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0182-9

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing