Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Episodic creep events on the San Andreas Fault caused by pore pressure variations

Abstract

Recent seismic and geodetic observations indicate that interseismic creep rate varies in both time and space. The spatial extent of creep pinpoints locked asperities, while its temporary accelerations, known as slow-slip events, may trigger earthquakes. Although the conditions promoting fault creep are well-studied, the mechanisms for initiating episodic slow-slip events are enigmatic. Here we investigate surface deformation measured by radar interferometry along the central San Andreas Fault between 2003 and 2010 to constrain the temporal evolution of creep. We show that slow-slip events are ensembles of localized creep bursts that aseismically rupture isolated fault compartments. Using a rate-and-state friction model, we show that effective normal stress is temporally variable on the fault, and support this using seismic observations. We propose that compaction-driven elevated pore fluid pressure in the hydraulically isolated fault zone and subsequent frictional dilation cause the observed slow-slip episodes. We further suggest that the 2004 Mw 6 Parkfield earthquake might have been triggered by a slow-slip event, which increased the Coulomb failure stress by up to 0.45 bar per year. This implies that while creeping segments are suggested to act as seismic rupture barriers, slow-slip events on these zones might promote seismicity on adjacent locked segments.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Creeping segment of the San Andreas Fault with long-term InSAR LOS velocity20,25.
Fig. 2: Spatiotemporal distribution of rate difference and seismicity.
Fig. 3: Temporal evolution of creep rate, effective normal stressing rate, roughness and b-value.

Similar content being viewed by others

References

  1. Pacheco, J. F., Sykes, L. R. & Scholz, C. H. Nature of seismic coupling along simple plate boundaries of the subduction type. J. Geophys. Res. 98, 14133–14159 (1993).

    Article  Google Scholar 

  2. Perfettini, H. et al. Seismic and aseismic slip on the central Peru megathrust. Nature 465, 78–81 (2010).

    Article  Google Scholar 

  3. Chlieh, M. et al. Distribution of discrete seismic asperities and aseismic slip along the Ecuadorian megathrust. Earth Planet. Sci. Lett. 400, 292–301 (2014).

    Article  Google Scholar 

  4. Gao, X. & Wang, K. L. Strength of stick-slip and creeping subduction megathrusts from heat flow observations. Science 345, 1038–1041 (2014).

    Article  Google Scholar 

  5. Carpenter, B. M., Saffer, D. M. & Marone, C. Frictional properties of the active San Andreas Fault at SAFOD: implications for fault strength and slip behavior. J. Geophys. Res. 120, 5273–5289 (2015).

    Article  Google Scholar 

  6. Carpenter, B. M., Marone, C. & Saffer, D. M. Weakness of the San Andreas Fault revealed by samples from the active fault zone. Nat. Geosci. 4, 251–254 (2011).

    Article  Google Scholar 

  7. Lockner, D. A., Morrow, C., Moore, D. & Hickman, S. Low strength of deep San Andreas Fault gouge from SAFOD core. Nature 472, 82–85 (2011).

    Article  Google Scholar 

  8. Sibson, R. H. Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United States. Bull. Seismol. Soc. Am. 72, 151–163 (1982).

    Google Scholar 

  9. Rice, J. R. in Earthquake Mechanics, Rock Deformation, and Transport Properties of Rocks (eds Evans, B. & Wong, T.-F.) 475–503 (Academic Press, San Diego, 1992).

  10. Kodaira, S. et al. High pore fluid pressure may cause silent slip in the Nankai Trough. Science 304, 1295–1298 (2004).

    Article  Google Scholar 

  11. Kato, A. et al. Propagation of slow slip leading up to the 2011 M w 9.0 Tohoku-Oki earthquake. Science 335, 705–708 (2012).

    Article  Google Scholar 

  12. Schurr, B. et al. Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature 512, 299–302 (2014).

    Article  Google Scholar 

  13. Uchida, N., Iinuma, T., Nadeau, R. M., Burgmann, R. & Hino, R. Periodic slow slip triggers megathrust zone earthquakes in northeastern Japan. Science 351, 488–492 (2016).

    Article  Google Scholar 

  14. Shelly, D. R. Possible deep fault slip preceding the 2004 Parkfield earthquake, inferred from detailed observations of tectonic tremor. Geophys. Res. Lett. 36, L17318 (2009).

    Article  Google Scholar 

  15. Radiguet, M. et al. Triggering of the 2014 M w7.3 Papanoa earthquake by a slow slip event in Guerrero, Mexico. Nat. Geosci. 9, 829–833 (2016).

    Article  Google Scholar 

  16. Shelly, D. R., Peng, Z. G., Hill, D. P. & Aiken, C. Triggered creep as a possible mechanism for delayed dynamic triggering of tremor and earthquakes. Nat. Geosci. 4, 384–388 (2011).

    Article  Google Scholar 

  17. Wei, M., Liu, Y. J., Kaneko, Y., McGuire, J. J. & Bilham, R. Dynamic triggering of creep events in the Salton Trough, Southern California by regional M = 5.4 earthquakes constrained by geodetic observations and numerical simulations. Earth Planet. Sci. Lett. 427, 1–10 (2015).

    Article  Google Scholar 

  18. Shirzaei, M., Bürgmann, R. & Taira, T. A. Implications of recent asperity failures and aseismic creep for time-dependent earthquake hazard on the Hayward fault. Earth Planet. Sci. Lett. 371–372, 59–66 (2013).

    Article  Google Scholar 

  19. Nadeau, R. M. & McEvilly, T. V. Periodic pulsing of characteristic microearthquakes on the San Andreas Fault. Science 303, 220–222 (2004).

    Article  Google Scholar 

  20. Khoshmanesh, M., Shirzaei, M. & Nadeau, R. M. Time-dependent model of aseismic slip on the central San Andreas Fault from InSAR time series and repeating earthquakes. J. Geophys. Res. 120, 6658–6679 (2015).

    Article  Google Scholar 

  21. Williams, C. F., Grubb, F. V. & Galanis, S. P. Jr. Heat flow in the SAFOD pilot hole and implications for the strength of the San Andreas Fault. Geophys. Res. Lett. 31, L15S14 (2004).

    Google Scholar 

  22. Zoback, M. D. et al. New evidence on the state of stress on the San Andreas Fault system. Science 238, 1105–1111 (1987).

    Article  Google Scholar 

  23. Fulton, P. M. & Saffer, D. M. Potential role of mantle-derived fluids in weakening the San Andreas Fault. J. Geophys. Res. 114, B07408 (2009).

    Google Scholar 

  24. Wei, M., Kaneko, Y., Liu, Y. & McGuire, J. J. Episodic fault creep events in California controlled by shallow frictional heterogeneity. Nat. Geosci. 6, 566–570 (2013).

    Article  Google Scholar 

  25. Turner, R. C., Shirzaei, M., Nadeau, R. M. & Buergmann, R. Slow and go: pulsing slip rates on the creeping section of the San Andreas Fault. J. Geophys. Res. 120, 5940–5951 (2015).

    Article  Google Scholar 

  26. Shirzaei, M. A wavelet-based multitemporal DInSAR algorithm for monitoring ground surface motion. IEEE Geosci. Remote Sens. Lett. 10, 456–460 (2013).

    Article  Google Scholar 

  27. Khoshmanesh, M. & Shirzaei, M. Multiscale dynamics of aseismic slip on central San Andreas Fault. Geophys. Res. Lett. 45, 2274–2282 (2018).

    Article  Google Scholar 

  28. Jolivet, R. et al. The burst-like behavior of aseismic slip on a rough fault: the creeping section of the Haiyuan Fault, China. Bull. Seismol. Soc. Am. 105, 480–488 (2015).

    Article  Google Scholar 

  29. Schmittbuhl, J., Schmitt, F. & Scholz, C. Scaling invariance of crack surfaces. J. Geophys. Res. 100, 5953–5973 (1995).

    Article  Google Scholar 

  30. Shibazaki, B. & Lio, Y. On the physical mechanism of silent slip events along the deeper part of the seismogenic zone. Geophys. Res. Lett. 30, 1489 (2003).

    Article  Google Scholar 

  31. Kaproth, B. M. & Marone, C. Slow earthquakes, preseismic velocity changes, and the origin of slow frictional stick-slip. Science 341, 1229–1232 (2013).

    Article  Google Scholar 

  32. Ikari, M. J., Marone, C., Saffer, D. M. & Kopf, A. J. Slip weakening as a mechanism for slow earthquakes. Nat. Geosci. 6, 468–472 (2013).

    Article  Google Scholar 

  33. Liu, Y. J. & Rice, J. R. Spontaneous and triggered aseismic deformation transients in a subduction fault model. J. Geophys. Res. 112, B09404 (2007).

    Google Scholar 

  34. Segall, P., Rubin, A. M., Bradley, A. M. & Rice, J. R. Dilatant strengthening as a mechanism for slow slip events. J. Geophys. Res. 115, B12305 (2010).

    Article  Google Scholar 

  35. Iio, Y., Kobayashi, Y. & Tada, T. Large earthquakes initiate by the acceleration of slips on the downward extensions of seismogenic faults. Earth Planet. Sci. Lett. 202, 337–343 (2002).

    Article  Google Scholar 

  36. Perfettini, H. & Ampuero, J. P. Dynamics of a velocity strengthening fault region: implications for slow earthquakes and postseismic slip. J. Geophys. Res. 113, B09411 (2008).

    Article  Google Scholar 

  37. Schmitt, S. V., Segall, P. & Matsuzawa, T. Shear heating-induced thermal pressurization during earthquake nucleation. J. Geophys. Res. 116, B06308 (2011).

    Article  Google Scholar 

  38. Sleep, N. H. & Blanpied, M. L. Creep, compaction and the weak rheology of major faults. Nature 359, 687–692 (1992).

    Article  Google Scholar 

  39. Sleep, N. H. Ductile creep, compaction, and rate and state dependent friction within major fault zones. J. Geophys. Res. 100, 13065–13080 (1995).

    Article  Google Scholar 

  40. Byerlee, J. Model for episodic flow of high-pressure water in fault zones before earthquakes. Geology 21, 303–306 (1993).

    Article  Google Scholar 

  41. Ruina, A. Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359–10370 (1983).

    Article  Google Scholar 

  42. Malservisi, R., Furlong, K. P. & Gans, C. R. Microseismicity and creeping faults: hints from modeling the Hayward Fault, California (USA). Earth Planet. Sci. Lett. 234, 421–435 (2005).

    Article  Google Scholar 

  43. Tormann, T., Wiemer, S., Metzger, S., Michael, A. & Hardebeck, J. L. Size distribution of Parkfield’s microearthquakes reflects changes in surface creep rate. Geophys. J. Int. 193, 1474–1478 (2013).

    Article  Google Scholar 

  44. Blanpied, M. L., Lockner, D. A. & Byerlee, J. D. An earthquake mechanism based on rapid sealing of faults. Nature 358, 574–576 (1992).

    Article  Google Scholar 

  45. Leclere, H., Faulkner, D., Wheeler, J. & Mariani, E. Permeability control on transient slip weakening during gypsum dehydration: implications for earthquakes in subduction zones. Earth Planet. Sci. Lett. 442, 1–12 (2016).

    Article  Google Scholar 

  46. Hillers, G. & Miller, S. A. Dilatancy controlled spatiotemporal slip evolution of a sealed fault with spatial variations of the pore pressure. Geophys. J. Int. 168, 431–445 (2007).

    Article  Google Scholar 

  47. Mittempergher, S. et al. Evidence of transient increases of fluid pressure in SAFOD phase III cores. Geophys. Res. Lett. 38, L03301 (2011).

    Article  Google Scholar 

  48. Morrow, C. A., Lockner, D. A., Moore, D. E. & Hickman, S. Deep permeability of the San Andreas Fault from San Andreas Fault Observatory at Depth (SAFOD) core samples. J. Struct. Geol. 64, 99–114 (2014).

    Article  Google Scholar 

  49. Lockner, D. A. & Byerlee, J. D. An earthquake instability model based on faults containing high fluid pressure compartments. Pure Appl. Geophys. 145, 717–746 (1995).

    Article  Google Scholar 

  50. Waldhauser, F. & Schaff, D. P. Large-scale relocation of two decades of Northern California seismicity using cross-correlation and double-difference methods. J. Geophys. Res. 113, B08311 (2008).

    Article  Google Scholar 

  51. Johanson, I. A., Fielding, E. J., Rolandone, F. & Burgmann, R. Coseismic and postseismic slip of the 2004 Parkfield earthquake from space-geodetic data. Bull. Seismol. Soc. Am. 96, S269–S282 (2006).

    Article  Google Scholar 

  52. Perfettini, H. & Avouac, J. P. Modeling afterslip and aftershocks following the 1992 Landers earthquake. J. Geophys. Res. 112, B07409 (2007).

    Article  Google Scholar 

  53. Parsons, T. Post-1906 stress recovery of the San Andreas fault system calculated from three-dimensional finite element analysis. J. Geophys. Res. https://doi.org/10.1029/2001JB001051 (2002).

  54. Okada, Y. Internal deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Am. 82, 1018–1040 (1992).

    Google Scholar 

  55. Schmittbuhl, J., Vilotte, J. P. & Roux, S. Reliability of self-affine measurements. Phys. Rev. E 51, 131–147 (1995).

    Article  Google Scholar 

  56. Candela, T. et al. Roughness of fault surfaces over nine decades of length scales. J. Geophys. Res. 117, B08409 (2012).

    Article  Google Scholar 

  57. Richter, C. F. Elementary Seismology 768 (Freeman, San Francisco, 1958).

  58. Utsu, T. A method for determining the value of b in a formula log n = a - bM showing the magnitude–frequency relation for earthquakes. Geophys. Bull. Hokkaido Univ. 13, 99–103 (1965).

    Google Scholar 

  59. Bender, B. Maximum likelihood estimation of b values for magnitude grouped data. Bull. Seismol. Soc. Am. 73, 831–851 (1983).

    Google Scholar 

  60. Shi, Y. & Bolt, B. A. The standard error of the magnitude–frequency b value. Bull. Seismol. Soc. Am. 72, 1677–1687 (1982).

    Google Scholar 

  61. Woessner, J. & Wiemer, S. Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty. Bull. Seism. Soc. Am. 95, 684–698 (2005).

    Article  Google Scholar 

  62. Tormann, T., Wiemer, S. & Mignan, A. Systematic survey of high-resolution b value imaging along Californian faults: inference on asperities. J. Geophys. Res. Solid Earth 119, 2029–2054 (2014).

    Article  Google Scholar 

  63. Schorlemmer, D., Wiemer, S. & Wyss, M. Earthquake statistics at Parkfield: 1. Stationarity of b values. J. Geophys. Res. 109, B12307 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by National Science Foundation grants EAR-1357079 and EAR-1735630, and NASA Earth and Space Fellowship No. 80NSSC17K0371. The InSAR time series was obtained from refs 20,]25. The seismic catalogue was obtained from ref. 50. The creepmeter data at Slacks Canyon were obtained from the United States Geological Survey. We greatly thank H. Perfettini and D. Shelly for comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

M.K. performed the data analyses and modelling, interpreted the results, prepared figures displaying the results and wrote the manuscript. M.S. contributed to modelling, interpretation and editing the manuscript.

Corresponding author

Correspondence to Mostafa Khoshmanesh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures.

Supplementary Movie

Time series of cumulative surface deformation in LOS direction during 2003–2010.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoshmanesh, M., Shirzaei, M. Episodic creep events on the San Andreas Fault caused by pore pressure variations. Nature Geosci 11, 610–614 (2018). https://doi.org/10.1038/s41561-018-0160-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0160-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing