Heterogeneous delivery of silicate and metal to the Earth by large planetesimals


After the Moon’s formation, Earth experienced a protracted bombardment by leftover planetesimals. The mass delivered during this stage of late accretion has been estimated to be approximately 0.5% of Earth’s present mass, based on highly siderophile element concentrations in the Earth’s mantle and the assumption that all highly siderophile elements delivered by impacts were retained in the mantle. However, late accretion may have involved mostly large (≥ 1,500 km in diameter)—and therefore differentiated—projectiles in which highly siderophile elements were sequestered primarily in metallic cores. Here we present smoothed-particle hydrodynamics impact simulations that show that substantial portions of a large planetesimal’s core may descend to the Earth’s core or escape accretion entirely. Both outcomes reduce the delivery of highly siderophile elements to the Earth’s mantle and imply a late accretion mass that may be two to five times greater than previously thought. Further, we demonstrate that projectile material can be concentrated within localized domains of Earth’s mantle, producing both positive and negative 182W isotopic anomalies of the order of 10 to 100  ppm. In this scenario, some isotopic anomalies observed in terrestrial rocks can be explained as products of collisions after Moon formation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Projectile’s core interaction during large terrestrial collisions.
Fig. 2: Post-impact distribution of projectile material.
Fig. 3: Collisionally driven compositional heterogeneities.
Fig. 4: Impact-driven W isotopic anomalies.


  1. 1.

    Raymond, S. N., Schlichting, H. E., Hersant, F. & Selsis, F. Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets. Icarus 226, 671–681 (2013).

    Article  Google Scholar 

  2. 2.

    Canup, R. M. Simulations of a late lunar-forming impact. Icarus 168, 433–456 (2004).

    Article  Google Scholar 

  3. 3.

    Mann, U., Frost, D. J., Rubie, D. C., Becker, H. & Audétat, A. Partitioning of Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures and high temperatures — implications for the origin of highly siderophile element concentrations in the Earth’s mantle. Geochim. Cosmochim. Acta 84, 593–613 (2012).

    Article  Google Scholar 

  4. 4.

    Rubie, D. C. et al. Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus 248, 89–108 (2015).

    Article  Google Scholar 

  5. 5.

    Kimura, K., Lewis, R. S. & Anders, E. Distribution of gold and rhenium between nickel-iron and silicate melts: implications for the abundance of siderophile elements on the Earth and Moon. Geochim. Cosmochim. Acta 38, 683–701 (1974).

    Article  Google Scholar 

  6. 6.

    Chou, C.-L. Fractionation of siderophile elements in the Earth’s upper mantle. In Proc. 9th Lunar and Planetary Science Conference 219–230 (1978).

  7. 7.

    Walker, R. J. Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chem. Erde 69, 101–125 (2009).

    Article  Google Scholar 

  8. 8.

    Rubie, D. C., Melosh, H. J., Reid, J. E., Liebske, C. & Righter, K. Mechanisms of metal-silicate equilibration in the terrestrial magma ocean. Earth Planet. Sci. Lett. 205, 239–255 (2015).

    Article  Google Scholar 

  9. 9.

    Kendall, J. D. & Melosh, H. J. Differentiated planetesimal impacts into a terrestrial magma ocean: fate of the iron core. Earth Planet. Sci. Lett. 448, 24–33 (2016).

    Article  Google Scholar 

  10. 10.

    Bottke, W. F., Walker, R. J., Day, J. M. D., Nesvorny, D. & Elkins-Tanton, L. Stochastic late accretion to Earth, the Moon, and Mars. Science 330, 1527–1530 (2010).

    Article  Google Scholar 

  11. 11.

    Marchi, S. et al. Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511, 578–582 (2014).

    Article  Google Scholar 

  12. 12.

    Pahlevan, K. & Morbidelli, A. Collisionless encounters and the origin of the lunar inclination. Nature 527, 492–494 (2015).

    Article  Google Scholar 

  13. 13.

    Dahl, T. W. & Stevenson, D. J. Turbulent mixing of metal and silicate during planet accretion — and interpretation of the Hf–W chronometer. Earth Planet. Sci. Lett. 295, 177–186 (2010).

    Article  Google Scholar 

  14. 14.

    Deguen, R., Landeau, M. & Olson, P. Turbulent metal-silicate mixing, fragmentation, and equilibration in magma oceans. Earth Planet. Sci. Lett. 391, 274–287 (2014).

    Article  Google Scholar 

  15. 15.

    Wade, J. & Wood, B. J. Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005).

    Article  Google Scholar 

  16. 16.

    Kraus, R. G. et al. Impact vaporization of planetesimal cores in the late stages of planet formation. Nat. Geosci. 8, 269–272 (2015).

    Article  Google Scholar 

  17. 17.

    Kleine, T. et al. Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009).

    Article  Google Scholar 

  18. 18.

    Willbold, M., Elliott, T. & Moorbath, S. The tungsten isotopic composition of the Earth’s mantle before the terminal bombardment. Nature 477, 195–198 (2011).

    Article  Google Scholar 

  19. 19.

    Touboul, M., Puchtel, I. S. & Walker, R. J. 182W evidence for long-term preservation of early mantle differentiation products. Science 335, 1065–1069 (2012).

    Article  Google Scholar 

  20. 20.

    Puchtel, I.S., Blichert-Toft, J., Touboul, M., Horan, M. F. & Walker, R. J. Coupled 182W–142Nd record of the early differentiation of Earth’s mantle. Geochem. Geophys. Geosyst. 17, GC006324 (2016).

  21. 21.

    Rizo, H. et al. Memories of Earth formation in the modern mantle: W isotopic compositions of flood basalt lavas. Science 352, 809–812 (2016).

    Article  Google Scholar 

  22. 22.

    Willbold, M., Mojzsis, S. J., Chen, H.-W. & Elliott, T. Tungsten isotope composition of the Acasta Gneiss Complex. Earth Planet. Sci. Lett. 419, 168–177 (2015).

    Article  Google Scholar 

  23. 23.

    Ćuk, M. & Stewart, S. T. Making the Moon from a Fast-Spinning Earth: A Giant Impact Followed by Resonant Despinning. Science 338, 1047–1052 (2012).

    Article  Google Scholar 

  24. 24.

    Canup, R. M. Forming a Moon with an Earth-like composition via a giant impact. Science 338, 1052–1055 (2012).

    Article  Google Scholar 

  25. 25.

    Nakajima, M. & Stevenson, D. J. Melting and mixing states of the Earth’s mantle after the Moon-forming impact. Earth Planet. Sci. Lett. 427, 286–295 (2015).

    Article  Google Scholar 

  26. 26.

    Mundl, A. et al. Tungsten-182 heterogeneity in modern ocean island basalts. Science 356, 66–69 (2017).

    Article  Google Scholar 

  27. 27.

    Rizo, H. et al. Early Earth differentiation investigated through 142Nd, 182W, and highly siderophile element abundances in samples from Isua, Greenland. Geochim. Cosmochim. Acta 175, 319–336 (2016).

    Article  Google Scholar 

  28. 28.

    Dale, C. W., Kruijer, T. S. & Burton, K. W. Highly siderophile element and 182W evidence for a partial late veneer in the source of 3.8 Ga rocks from Isua, Greenland. Earth Planet. Sci. Lett. 458, 394–404 (2017).

    Article  Google Scholar 

  29. 29.

    O’Brien, D. P., Morbidelli, A. & Levison, H. F. Terrestrial planet formation with strong dynamical friction. Icarus 184, 39–58 (2006).

    Article  Google Scholar 

  30. 30.

    Jacobson, S. A. & Morbidelli, A. Lunar and terrestrial planet formation in the Grand Tack scenario. Phil. Trans. R. Soc. A 372, 0174 (2014).

    Article  Google Scholar 

  31. 31.

    Morbidelli, A., Marchi, S., Bottke, W. F. & Kring, D. A. A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet. Sci. Lett. 355–356, 144–151 (2012).

    Article  Google Scholar 

  32. 32.

    Touboul, M., Puchtel, I. S. & Walker, R. J. Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon. Nature 520, 530–533 (2015).

    Article  Google Scholar 

  33. 33.

    Kruijer, T. S., Kleine, T., Fischer-Gödde, M. & Sprung, P. Lunar tungsten isotopic evidence for the late veneer. Nature 520, 534–537 (2015).

    Article  Google Scholar 

  34. 34.

    Marchi, S., Bottke, W. F., Kring, D. A. & Morbidelli, A. The onset of the lunar cataclysm as recorded in its ancient crater populations. Earth Planet. Sci. Lett. 325, 27–38 (2012).

    Article  Google Scholar 

  35. 35.

    Pritchard, M. E. & Stevenson, D. J. in Origin of the Earth and Moon (eds Canup, R. M. & Righter, K.) 179 (Univ. Arizona Press, Tuscon, 2000).

  36. 36.

    Levison, H. F., Kretke, K. A., Walsh, K. J. & Bottke, W. F. Growing the terrestrial planets from the gradual accumulation of sub-meter sized objects. Proc. Natl Acad. Sci. USA 112, 14180–14185 (2015).

    Article  Google Scholar 

  37. 37.

    Barr, A. C. & Canup, R. M. Origin of the Ganymede–Callisto dichotomy by impacts during the late heavy bombardment. Nat. Geosci. 3, 164–167 (2010).

    Article  Google Scholar 

  38. 38.

    Jackson, A. P. & Wyatt, M. C. Debris from terrestrial planet formation: the Moon-forming collision. Mon. Notices Royal Astron. Soc. 425, 657–679 (2012).

    Article  Google Scholar 

  39. 39.

    Bottke, W. F. et al. Dating the Moon-forming impact event with asteroidal meteorites. Science 348, 321–323 (2015).

    Article  Google Scholar 

  40. 40.

    Melosh, H. J. A hydrocode equation of state for SiO2. Meteorit. Planet. Sci. 42, 2079–2098 (2007).

    Article  Google Scholar 

  41. 41.

    Wacheul, J.-B., Le Bars, M., Monteux, J. & Aurnou, J. M. Laboratory experiments on the breakup of liquid metal diapirs. Earth Planet. Sci. Lett. 403, 236–245 (2014).

    Article  Google Scholar 

  42. 42.

    Canup, R. M. Lunar-forming collisions with pre-impact rotation. Icarus 196, 518–538 (2008).

    Article  Google Scholar 

  43. 43.

    Elkins-Tanton, L. T. Magma oceans in the inner solar system. Annu. Rev. Earth Planet. Sci. 40, 113–139 (2012).

    Article  Google Scholar 

  44. 44.

    Zahnle, K. J., Lupu, R., Dobrovolskis, A. & Sleep, N. H. The tethered Moon. Earth Planet. Sci. Lett. 427, 74–82 (2015).

    Article  Google Scholar 

  45. 45.

    Elkins-Tanton, L. T. Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008).

    Article  Google Scholar 

  46. 46.

    Hamano, K., Abe, Y. & Genda, H. Emergence of two types of terrestrial planet on solidification of magma ocean. Nature 497, 607–610 (2013).

    Article  Google Scholar 

  47. 47.

    Solomatov, V. S. in Treatise on Geophysics Vol. 9 (ed. Schubert, G.) 91–120 (Elsevier, Heinrich, 2007).

  48. 48.

    Samuel, H. A re-evaluation of metal diapir breakup and equilibration in terrestrial magma oceans. Earth Planet. Sci. Lett. 313, 105–114 (2012).

    Article  Google Scholar 

  49. 49.

    Stevenson, D. J. in Origin of the Earth (ed. Jones, H.E.N.a.J.H.) 231–250 (Oxford University Press, New York, 1990).

  50. 50.

    King, C. & Olson, P. Heat partitioning in metal-silicate plumes during Earth differentiation. Earth Planet. Sci. Lett. 304, 577–586 (2011).

    Article  Google Scholar 

  51. 51.

    Zimmerman, M. E., Zhang, S., Kohlstedt, D. L. & Karato, S.-I. Melt distribution in mantle rocks deformed in shear. Geophys. Res. Lett. 26, 1505–1508 (1999).

    Article  Google Scholar 

Download references


We thank F. Nimmo, K. Pahlevan, D. Stevenson and A. Morbidelli for discussion and comments that greatly improved the paper. S.M. and R.M.C. thank NASA Exobiology grant NNX15AL26G and NASA SSERVI programmes for support. R.J.W. acknowledges NASA Emerging Worlds grant NNX16AN07G, and NASA SSERVI grant NNA14AB07A.

Author information




S.M. conceived the work and analysed SPH results. R.M.C. performed SPH simulations and analysed the results. R.J.W. contributed HSE and W data and interpretation. All authors wrote the manuscript and discussed the results.

Corresponding author

Correspondence to S. Marchi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary figures and tables

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marchi, S., Canup, R.M. & Walker, R.J. Heterogeneous delivery of silicate and metal to the Earth by large planetesimals. Nature Geosci 11, 77–81 (2018). https://doi.org/10.1038/s41561-017-0022-3

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing