Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alkyl ammonium iodide-based ligand exchange strategy for high-efficiency organic-cation perovskite quantum dot solar cells

Abstract

Whereas lead halide perovskite-based colloidal quantum dots (PQDs) have emerged as a promising photoactive material for solar cells, the research to this point has predominantly focused on inorganic cation PQDs despite the fact that organic cation PQDs have more favourable bandgaps. In this work, we develop solar cells using narrow bandgap organic cation-based PQDs and demonstrate substantially higher efficiency compared with their inorganic counterparts. We employ an alkyl ammonium iodide-based ligand exchange strategy, which proves to be substantially more efficient in replacing the long-chain oleyl ligands than conventional methyl acetate-based ligand exchange while stabilizing the α phase of organic PQDs in ambient conditions. We show a solar cell with the organic cation PQDs with high certified quasi-steady-state efficiency of 18.1% with 1,200-h stability under illumination at open-circuit conditions and 300-h stability at 80 °C.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photovoltaic performance and surface characteristics of PQD layers by different ligand exchange methods.
Fig. 2: Effects of different ligand exchange methods on the trap states of PQD.
Fig. 3: Solar cell performance of the PQD-MAI device.
Fig. 4: Long-term stability of PQD solar cells.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are included within the article and its Supplementary Information files.

References

  1. Swarnkar, A. et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Hao, M. et al. Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 5, 79–88 (2020).

    Article  ADS  CAS  Google Scholar 

  3. Hassan, Y. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72–77 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Xue, J. et al. Surface ligand management for stable FAPbI3 perovskite quantum dot solar cells. Joule 2, 1866–1878 (2018).

    Article  CAS  Google Scholar 

  5. Cui, Y. et al. An explanation for high defect tolerance in metal halide perovskite quantum dots. Phys. Status Solidi RRL 15, 2100016 (2021).

    Article  CAS  Google Scholar 

  6. Sanehira, E. M. et al. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 3, eaao4204 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yuan, J. Y. et al. Band-aligned polymeric hole transport materials for extremely low energy loss alpha-CsPbI3 perovskite nanocrystal solar cells. Joule 2, 2450–2463 (2018).

    Article  CAS  Google Scholar 

  8. Vidal, R. et al. Assessing health and environmental impacts of solvents for producing perovskite solar cells. Nat. Sustain. 4, 277–285 (2021).

    Article  Google Scholar 

  9. Zhao, Q. et al. High efficiency perovskite quantum dot solar cells with charge separating heterostructure. Nat. Commun. 10, 2842 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Ling, X. et al. Guanidinium-assisted surface matrix engineering for highly efficient perovskite quantum dot photovoltaics. Adv. Mater. 32, 2001906 (2020).

    Article  CAS  Google Scholar 

  11. Li, Z. et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28, 284–292 (2016).

    Article  ADS  Google Scholar 

  12. Jia, D. et al. Surface matrix curing of inorganic CsPbI3 perovskite quantum dots for solar cells with efficiency over 16%. Energy Environ. Sci. 14, 4599–4609 (2021).

    Article  CAS  Google Scholar 

  13. Jia, D. L. et al. Inhibiting lattice distortion of CsPbI3 perovskite quantum dots for solar cells with efficiency over 16.6%. Energy Environ. Sci. 15, 4201–4212 (2022).

    Article  CAS  Google Scholar 

  14. Prasanna, R. et al. Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J. Am. Chem. Soc. 139, 11117–11124 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Lee, J.-W., Seol, D.-J., Cho, A.-N. & Park, N.-G. High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Adv. Mater. 26, 4991–4998 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Xue, J. et al. A small-molecule ‘charge driver’ enables perovskite quantum dot solar cells with efficiency approaching 13%. Adv. Mater. 31, 1900111 (2019).

    Article  Google Scholar 

  17. Ji, K. et al. High-efficiency perovskite quantum dot solar cells benefiting from a conjugated polymer-quantum dot bulk heterojunction connecting layer. J. Mater. Chem. A 8, 8104–8112 (2020).

    Article  CAS  Google Scholar 

  18. Ding, S. et al. In situ bonding regulation of surface ligands for efficient and stable FAPbI3 quantum dot solar cells. Adv. Sci. 9, e2204476 (2022).

    Article  Google Scholar 

  19. Zhang, X. et al. Ligand-assisted coupling manipulation for efficient and stable FAPbI3 colloidal quantum dot solar cells. Angew. Chem. Int. Ed. 62, e202214241 (2023).

    Article  CAS  Google Scholar 

  20. Li, M. J. et al. Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals. Nat. Commun. 9, 4197 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  21. Kulbak, M. et al. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J. Phys. Chem. Lett. 7, 167–172 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Lee, J.-W. et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5, 1501310 (2015).

    Article  Google Scholar 

  23. Protesescu, L. et al. Dismantling the ‘red wall’ of colloidal perovskites: highly luminescent formamidinium and formamidinium–cesium lead iodide nanocrystals. ACS Nano 11, 3119–3134 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Galkowski, K. et al. Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy Environ. Sci. 9, 962–970 (2016).

    Article  CAS  Google Scholar 

  25. Jeong, J. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Wheeler, L. M. et al. Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics. J. Am. Chem. Soc. 140, 10504–10513 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Zheng, X. et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5, 131–140 (2020).

    Article  ADS  CAS  Google Scholar 

  28. De Roo, J. et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10, 2071–2081 (2016).

    Article  PubMed  Google Scholar 

  29. Xu, Y. Z. et al. Ion-assisted ligand exchange for efficient and stable inverted FAPbI3 quantum dot solar cells. ACS Appl. Energy Mater. 5, 9858–9869 (2022).

    Article  CAS  Google Scholar 

  30. Kim, Y. et al. Efficient luminescence from perovskite quantum dot solids. ACS Appl. Mater. Interfaces 7, 25007–25013 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Jia, D. et al. Antisolvent-assisted in-situ cation exchange of perovskite quantum dots for efficient solar cells. Adv. Mater. 35, 2212160 (2023).

    Article  CAS  Google Scholar 

  32. Chen, J., Seo, J.-Y. & Park, N.-G. Simultaneous improvement of photovoltaic performance and stability by in situ formation of 2D perovskite at (FAPbI3)0.88(CsPbBr3)0.12/CuSCN interface. Adv. Energy Mater. 8, 1702714 (2018).

    Article  Google Scholar 

  33. Kim, M. et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 2179–2192 (2019).

    Article  CAS  Google Scholar 

  34. Du, T. et al. Elucidating the origins of subgap tail states and open-circuit voltage in methylammonium lead triiodide perovskite solar cells. Adv. Funct. Mater. 28, 1801808 (2018).

    Article  Google Scholar 

  35. Ip, A. H. et al. Hybrid passivated colloidal quantum dot solids. Nat. Nanotechnol. 7, 577–582 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Dong, Q. F. et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Fan, Y. P., Meng, H. G., Wang, L. & Pang, S. P. Review of stability enhancement for formamidinium-based perovskites. Sol. RRL 3, 1900215 (2019).

    Article  Google Scholar 

  39. Kim, S. et al. Thermodynamics of multicomponent perovskites: a guide to highly efficient and stable solar cell materials. Chem. Mater. 32, 4265–4272 (2020).

    Article  CAS  Google Scholar 

  40. Frost, J. M. et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pellet, N. et al. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53, 3151–3157 (2014).

    Article  CAS  Google Scholar 

  42. Eperon, G. E., Beck, C. E. & Snaith, H. J. Cation exchange for thin film lead iodide perovskite interconversion. Mater. Horiz. 3, 63–71 (2016).

    Article  CAS  Google Scholar 

  43. Unger, E. L. et al. Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 7, 3690–3698 (2014).

    Article  CAS  Google Scholar 

  44. Best Research-Cell Efficiencies Chart (NREL, 2022); https://www.nrel.gov/pv/cell-efficiency.html

  45. Azmi, R. et al. Shallow and deep trap state passivation for low-temperature processed perovskite solar cells. ACS Energy Lett. 5, 1396–1403 (2020).

    Article  CAS  Google Scholar 

  46. Kyaw, A. K. K. et al. Improved light harvesting and improved efficiency by insertion of an optical spacer (ZnO) in solution-processed small-molecule solar cells. Nano Lett. 13, 3796–3801 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Macpherson, S. et al. Local nanoscale phase impurities are degradation sites in halide perovskites. Nature 607, 294–300 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Beek, W. J. E. et al. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. J. Phys. Chem. B 109, 9505–9516 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea under grant numbers NRF-2023R1A2C3002881 (Sang-Hak Lee, J.-H.H., Su-Ho Lee and S.-Y.J.), 2022M3H4A1A03076652 (Sang-Hak Lee, J.-H.H., Su-Ho Lee and S.-Y.J.) and RS-2023-00222006 (Sang-Hak Lee and S.-Y.J.).

Author information

Authors and Affiliations

Authors

Contributions

H.A. and S.-Y.J. conceived of the work. H.A., Sang-Hak Lee and I.F.I. fabricated and characterized solar cells under the guidance of S.-Y.J. H.A. and Sang-Hak Lee conducted FTIR, 1H-MAS NMR and analysis of data. I.F.I. performed TCSPC, TPV/TPC and SCLC measurements. I.F.I. and J.-H.H. conducted GIWAXS and XRD measurements. Sang-Hak Lee and Su-Ho Lee performed transmission electron microscopy, AFM and SEM measurements. S.-Y.J. directed and supervised the project. The manuscript was written by S.-Y.J. and H.A. with comments and inputs from all authors.

Corresponding author

Correspondence to Sung-Yeon Jang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Lianzhou Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2, Figs. 1–20, Tables 1–3 and References.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aqoma, H., Lee, SH., Imran, I.F. et al. Alkyl ammonium iodide-based ligand exchange strategy for high-efficiency organic-cation perovskite quantum dot solar cells. Nat Energy 9, 324–332 (2024). https://doi.org/10.1038/s41560-024-01450-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-024-01450-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing