Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries

Subjects

Abstract

Solid polymers are promising electrolytes for Li-metal batteries, but they have limitations: they cannot simultaneously achieve high ionic conductivity, good mechanical strength and compatibility with high-voltage cathodes while suppressing Li dendrites. Here, we design a class of locally high-concentration solid polymer electrolytes based on polymer blends, which are termed Li-polymer in F diluter (LPIFD). The Li-polymer (polymer-in-salt) ensures continuous Li-ion conduction channels and contributes to the solid electrolyte interphase (SEI), and the F diluter (inert fluorinated polymer) adds mechanical strength. Studies reveal that a single-phase LPIFD, which is based on a miscible polymer blend, lacks phase boundaries and forms an organic-less and LiF-rich SEI, effectively suppressing lithium dendrites. The single-phase LPIFD delivers ionic conductivity of 3.0 × 10−4 S cm−1, and enables the Li anode to reach a high coulombic efficiency of 99.1% and a critical current density of 3.7 mA cm−2. Furthermore, the ability to form an F-rich cathode electrolyte interphase allows LiNi0.8Co0.1Mn0.1O2||Li cells to achieve a cycle life of 450 cycles at a high operating voltage of 4.5 V. This design will inspire efforts to commercialize polymer electrolytes for high-energy Li-metal batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the logic for designing single-phase LPIFD SPEs.
Fig. 2: Design of LPIFD electrolytes.
Fig. 3: Properties of phase-separated and single-phase LPIFD.
Fig. 4: SEI composition and electrochemical performance of LPIFD polymer electrolytes with lithium.
Fig. 5: Different Li deposition behaviours of LPIFDs, and summary of design criteria.
Fig. 6: Full-cell performance of single-phase LPIFD.

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials.

References

  1. Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    Article  Google Scholar 

  2. Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).

    Article  Google Scholar 

  3. Huang, W., Feng, X., Han, X., Zhang, W. & Jiang, F. Questions and answers relating to lithium-ion battery safety issues. Cell Rep. Phys. Sci. 2, 100285 (2021).

    Article  Google Scholar 

  4. Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016).

    Article  Google Scholar 

  5. Li, W. et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015).

    Article  Google Scholar 

  6. Ren, Y., Shen, Y., Lin, Y. & Nan, C.-W. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem. Commun. 57, 27–30 (2015).

    Article  Google Scholar 

  7. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).

    Article  Google Scholar 

  8. Cheng, X.-B., Zhang, R., Zhao, C.-Z. & Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017).

    Article  Google Scholar 

  9. Liu, S. et al. In situ solid electrolyte interphase from spray quenching on molten Li: a new way to construct high‐performance lithium‐metal anodes. Adv. Mater. 31, 1806470 (2019).

    Article  Google Scholar 

  10. Paul, P. P. et al. A review of existing and emerging methods for lithium detection and characterization in Li‐ion and Li‐metal batteries. Adv. Energy Mater. 11, 2100372 (2021).

    Article  Google Scholar 

  11. Park, R. J.-Y. et al. Semi-solid alkali metal electrodes enabling high critical current densities in solid electrolyte batteries. Nat. Energy 6, 314–322 (2021).

    Article  Google Scholar 

  12. Fan, X. et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 4, eaau9245 (2018).

    Article  Google Scholar 

  13. Ji, X. et al. Solid‐state electrolyte design for lithium dendrite suppression. Adv. Mater. 32, 2002741 (2020).

    Article  Google Scholar 

  14. Ren, Y. X. et al. Rational design of spontaneous reactions for protecting porous lithium electrodes in lithium–sulfur batteries. Nat. Commun. 10, 3249 (2019).

    Article  Google Scholar 

  15. Fan, X. et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 13, 715–722 (2018).

    Article  Google Scholar 

  16. Wang, J. et al. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016).

    Article  Google Scholar 

  17. Yamada, Y. & Yamada, A. Superconcentrated electrolytes for lithium batteries. J. Electrochem. Soc. 162, A2406 (2015).

    Article  Google Scholar 

  18. Chen, J. et al. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5, 386–397 (2020).

    Article  Google Scholar 

  19. Fan, X. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018).

    Article  Google Scholar 

  20. Cao, X. et al. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4, 796–805 (2019).

    Article  Google Scholar 

  21. Ren, X. et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 4, 1877–1892 (2018).

    Article  Google Scholar 

  22. Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    Article  Google Scholar 

  23. Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396 (2005).

    Article  Google Scholar 

  24. Monroe, C. & Newman, J. The effect of interfacial deformation on electrodeposition kinetics. J. Electrochem. Soc. 151, A880 (2004).

    Article  Google Scholar 

  25. Krauskopf, T., Richter, F. H., Zeier, W. G. & Janek, J. Physicochemical concepts of the lithium metal anode in solid-state batteries. Chem. Rev. 120, 7745–7794 (2020).

    Article  Google Scholar 

  26. Cao, D. et al. Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter 3, 57–94 (2020).

    Article  Google Scholar 

  27. Lu, Y. et al. Critical current density in solid‐state lithium metal batteries: mechanism, influences, and strategies. Adv. Funct. Mater. 31, 2009925 (2021).

    Article  Google Scholar 

  28. Wang, Y. et al. Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways. Nat. Mater. 20, 1255–1263 (2021).

    Article  Google Scholar 

  29. Zhao, Q., Liu, X., Stalin, S., Khan, K. & Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365–373 (2019).

    Article  Google Scholar 

  30. Cabañero Martínez, M. A. et al. Are polymer‐based electrolytes ready for high‐voltage lithium battery applications? An overview of degradation mechanisms and battery performance. Adv. Energy Mater. 12, 2201264 (2022).

    Article  Google Scholar 

  31. Lin, R. et al. Characterization of the structure and chemistry of the solid–electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries. Nat. Nanotechnol. 17, 768–776 (2022).

    Article  Google Scholar 

  32. Holoubek, J. et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6, 303–313 (2021).

    Article  Google Scholar 

  33. Gao, H., Grundish, N. S., Zhao, Y., Zhou, A. & Goodenough, J. B. Formation of stable interphase of polymer-in-salt electrolyte in all-solid-state lithium batteries. Energy Mater. Adv. 2021, 1932952 (2021).

  34. Chen, F., Wang, X., Armand, M. & Forsyth, M. Cationic polymer-in-salt electrolytes for fast metal ion conduction and solid-state battery applications. Nat. Mater. 21, 1175–1182 (2022).

  35. Kimura, K., Yajima, M. & Tominaga, Y. A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature. Electrochem. Commun. 66, 46–48 (2016).

    Article  Google Scholar 

  36. Fan, R. et al. Versatile strategy for realizing flexible room-temperature all-solid-state battery through a synergistic combination of salt affluent PEO and Li6.75La3Zr1.75Ta0.25O12 nanofibers. ACS Appl. Mater. Interfaces 12, 7222–7231 (2020).

    Article  Google Scholar 

  37. Wang, X. et al. Lithium-salt-rich PEO/Li0.3La0.557TiO3 interpenetrating composite electrolyte with three-dimensional ceramic nano-backbone for all-solid-state lithium-ion batteries. ACS Appl. Mater. Interfaces 10, 24791–24798 (2018).

    Article  Google Scholar 

  38. Wu, J. et al. Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ. Sci. 14, 12–36 (2021).

    Article  Google Scholar 

  39. Wang, X. et al. Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes. Nat. Mater. 21, 1057–1065 (2022).

  40. Zhao, Y. et al. A rational design of solid polymer electrolyte with high salt concentration for lithium battery. J. Power Sources 407, 23–30 (2018).

    Article  Google Scholar 

  41. Cheng, X.-B., Zhao, C.-Z., Yao, Y.-X., Liu, H. & Zhang, Q. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem 5, 74–96 (2019).

    Article  Google Scholar 

  42. Han, F. et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).

    Article  Google Scholar 

  43. Wu, B. et al. The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy Environ. Sci. 11, 1803–1810 (2018).

    Article  Google Scholar 

  44. Wu, Q. et al. Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries. Nat. Commun. 14, 6296 (2023).

  45. Xi, J. et al. PVDF–PEO blends based microporous polymer electrolyte: effect of PEO on pore configurations and ionic conductivity. J. Power Sources 157, 501–506 (2006).

    Article  Google Scholar 

  46. Chaput, S., Carrot, C., Castro, M. & Prochazka, F. Co-continuity interval in immiscible polymer blends by dynamic mechanical spectroscopy in the molten and solid state. Rheol. Acta 43, 417–426 (2004).

    Article  Google Scholar 

  47. Liu, J. et al. Blending-based poly(vinylidene fluoride)/polymethyl methacrylate membrane for rechargeable lithium-ion batteries. Ionics 25, 5201–5211 (2019).

    Article  Google Scholar 

  48. Cznotka, E., Jeschke, S., Schmohl, S., Johansson, P. & Wiemhöfer, H.-D. 3D laser scanning confocal microscopy of siloxane-based comb and double-comb polymers in PVDF-HFP thin films. J. Coat. Technol. Res. 13, 577–587 (2016).

    Article  Google Scholar 

  49. Tang, L. et al. Polyfluorinated crosslinker-based solid polymer electrolytes for long-cycling 4.5 V lithium metal batteries. Nat. Commun. 14, 2301 (2023).

    Article  Google Scholar 

  50. Zhang, X. et al. Self‐suppression of lithium dendrite in all‐solid‐state lithium metal batteries with poly(vinylidene difluoride)‐based solid electrolytes. Adv. Mater. 31, 1806082 (2019).

    Article  Google Scholar 

  51. Liu, W. et al. Designing polymer‐in‐salt electrolyte and fully infiltrated 3D electrode for integrated solid‐state lithium batteries. Angew. Chem. 133, 13041–13050 (2021).

    Article  Google Scholar 

  52. Zhang, W., Yi, Q., Li, S. & Sun, C. An ion-conductive Li7La3Zr2O12-based composite membrane for dendrite-free lithium metal batteries. J. Power Sources 450, 227710 (2020).

    Article  Google Scholar 

  53. Guo, S. et al. PVDF-HFP/LiF composite interfacial film to enhance the stability of Li-metal anodes. ACS Appl. Energy Mater. 3, 7191–7199 (2020).

    Article  Google Scholar 

  54. Borodin, O. Challenges with prediction of battery electrolyte electrochemical stability window and guiding the electrode–electrolyte stabilization. Curr. Opin. Electrochem. 13, 86–93 (2019).

    Article  Google Scholar 

  55. Yang, Z., Zhang, W., Li, J. & Chen, J. Polyphosphazene membrane for desulfurization: selecting poly[bis(trifluoroethoxy) phosphazene] for pervaporative removal of thiophene. Sep. Purif. Technol. 93, 15–24 (2012).

    Article  Google Scholar 

  56. Kaskhedikar, N. et al. Ionic conductivity of polymer electrolyte membranes based on polyphosphazene with oligo(propylene oxide) side chains. Solid State Ion. 177, 703–707 (2006).

    Article  Google Scholar 

  57. Jankowsky, S., Hiller, M. M. & Wiemhöfer, H.-D. Preparation and electrochemical performance of polyphosphazene based salt-in-polymer electrolyte membranes for lithium ion batteries. J. Power Sources 253, 256–262 (2014).

    Article  Google Scholar 

  58. Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).

    Article  Google Scholar 

  59. Xu, S. et al. Decoupling of ion pairing and ion conduction in ultrahigh-concentration electrolytes enables wide-temperature solid-state batteries. Energy Environ. Sci. 15, 3379–3387 (2022).

    Article  Google Scholar 

  60. Wang, J., Zhou, J., Hu, Y. & Regier, T. Chemical interaction and imaging of single Co3O4/graphene sheets studied by scanning transmission X-ray microscopy and X-ray absorption spectroscopy. Energy Environ. Sci. 6, 926–934 (2013).

    Article  Google Scholar 

  61. Schmeißer, D. et al. Characterization of oxidic and organic materials with synchrotron radiation based XPS and XAS. Mater. Sci. 27, 141–157 (2009).

  62. Widstrom, M. D. et al. Water domain enabled transport in polymer electrolytes for lithium-ion batteries. Macromolecules 54, 2882–2891 (2021).

    Article  Google Scholar 

  63. Chen, L. et al. A 63 m superconcentrated aqueous electrolyte for high-energy Li-ion batteries. ACS Energy Lett. 5, 968–974 (2020).

    Article  Google Scholar 

  64. Piao, N. et al. Countersolvent electrolytes for lithium‐metal batteries. Adv. Energy Mater. 10, 1903568 (2020).

    Article  Google Scholar 

  65. Smith, J. W. et al. X-ray absorption spectroscopy of LiBF4 in propylene carbonate: a model lithium ion battery electrolyte. Phys. Chem. Chem. Phys. 16, 23568–23575 (2014).

    Article  Google Scholar 

  66. Ong, M. T. et al. Lithium ion solvation and diffusion in bulk organic electrolytes from first-principles and classical reactive molecular dynamics. J. Phys. Chem. B 119, 1535–1545 (2015).

    Article  Google Scholar 

  67. Wu, C. H. et al. Molecular-scale structure of electrode–electrolyte interfaces: the case of platinum in aqueous sulfuric acid. J. Am. Chem. Soc. 140, 16237–16244 (2018).

    Article  Google Scholar 

  68. Yamane, H. et al. Critical absorbed dose of resinous adhesive material towards non-destructive chemical-state analysis using soft X-rays. J. Electron Spectros. Relat. Phenom. 232, 11–15 (2019).

    Article  Google Scholar 

  69. Zhou, D. et al. In situ synthesis of a hierarchical all‐solid‐state electrolyte based on nitrile materials for high‐performance lithium‐ion batteries. Adv. Energy Mater. 5, 1500353 (2015).

    Article  Google Scholar 

  70. Deng, T. et al. In situ formation of polymer-inorganic solid-electrolyte interphase for stable polymeric solid-state lithium-metal batteries. Chem 7, 3052–3068 (2021).

    Article  Google Scholar 

  71. Wu, N. et al. In situ formation of Li3P layer enables fast Li+ conduction across Li/solid polymer electrolyte interface. Adv. Funct. Mater. 30, 2000831 (2020).

    Article  Google Scholar 

  72. Fan, X. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4, 882–890 (2019).

    Article  Google Scholar 

  73. Chen, J. et al. Electrolyte design for Li metal-free Li batteries. Mater. Today 39, 118–126 (2020).

    Article  Google Scholar 

  74. Bhattacharyya, R. et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9, 504–510 (2010).

    Article  Google Scholar 

  75. Chandrashekar, S. et al. 7Li MRI of Li batteries reveals location of microstructural lithium. Nat. Mater. 11, 311–315 (2012).

    Article  Google Scholar 

  76. Tsai, C.-L. et al. Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl. Mater. Interfaces 8, 10617–10626 (2016).

    Article  Google Scholar 

  77. Liu, S. et al. An inorganic‐rich solid electrolyte interphase for advanced lithium‐metal batteries in carbonate electrolytes. Angew. Chem. Int. Ed. 60, 3661–3671 (2021).

    Article  Google Scholar 

  78. Liu, S. et al. Salt‐in‐salt reinforced carbonate electrolyte for Li metal batteries. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202210522 (2022).

  79. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article  Google Scholar 

  80. Fujigaya, T. et al. New photoresist materials for 157-nm lithography. Poly[vinylsulfonyl fluoride-co-4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropyl)-styrene] partially protected with tert-butoxycarbonyl. Chem. Mater. 15, 1512–1517 (2003).

    Article  Google Scholar 

  81. Gao, Y. et al. Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat. Mater. 18, 384–389 (2019).

    Article  Google Scholar 

  82. Lerotic, M., Jacobsen, C., Schäfer, T. & Vogt, S. Cluster analysis of soft X-ray spectromicroscopy data. Ultramicroscopy 100, 35–57 (2004).

    Article  Google Scholar 

  83. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  Google Scholar 

  84. Jorgensen, W. L. & Tirado-Rives, J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657–1666 (1988).

    Article  Google Scholar 

  85. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Article  Google Scholar 

  86. Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015).

    Article  Google Scholar 

  87. Pronk, S. et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29, 845–854 (2013).

    Article  Google Scholar 

  88. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).

    Article  Google Scholar 

  89. van der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).

    Article  Google Scholar 

  90. Berendsen, H. J. C., van der Spoel, D. & van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91, 43–56 (1995).

    Article  Google Scholar 

  91. Robertson, M. J., Tirado-Rives, J. & Jorgensen, W. L. Improved peptide and protein torsional energetics with the OPLS-AA force field. J. Chem. Theory Comput. 11, 3499–3509 (2015).

    Article  Google Scholar 

  92. Dodda, L. S., Cabeza de Vaca, I., Tirado-Rives, J. & Jorgensen, W. L. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res. 45, W331–W336 (2017).

    Article  Google Scholar 

  93. Singh, U. C. & Kollman, P. A. An approach to computing electrostatic charges for molecules. J. Comput. Chem. 5, 129–145 (1984).

    Article  Google Scholar 

  94. Tomasi, J. et al. Gaussian 16 Rev. C. 01 (Gaussian Inc., 2016).

  95. Twum, E. B., McCord, E. F., Lyons, D. F., Fox, P. A. & Rinaldi, P. L. Characterization of end groups and branching structures in copolymers of vinylidene fluoride with hexafluoropropylene using multidimensional NMR spectroscopy. Eur. Polym. J. 51, 136–150 (2014).

    Article  Google Scholar 

  96. Apostolo, M., Arcella, V., Storti, G. & Morbidelli, M. Kinetics of the emulsion polymerization of vinylidene fluoride and hexafluoropropylene. Macromolecules 32, 989–1003 (1999).

    Article  Google Scholar 

  97. Ameduri, B., Boutevin, B. & Kostov, G. Fluoroelastomers: synthesis, properties and applications. Prog. Polym. Sci. 26, 105–187 (2001).

    Article  Google Scholar 

  98. Twum, E. B., McCord, E. F., Fox, P. A., Lyons, D. F. & Rinaldi, P. L. Characterization of backbone structures in poly(vinylidene fluoride-co-hexafluoropropylene) copolymers by multidimensional 19F NMR spectroscopy. Macromolecules 46, 4892–4908 (2013).

    Article  Google Scholar 

  99. Gartner, T. E. III & Jayaraman, A. Modeling and simulations of polymers: a roadmap. Macromolecules 52, 755–786 (2019).

    Article  Google Scholar 

  100. Hockney, R. W., Goel, S. P. & Eastwood, J. W. Quiet high-resolution computer models of a plasma. J. Comput. Phys. 14, 148–158 (1974).

    Article  Google Scholar 

  101. Hess, B., Bekker, H., Berendsen, H. J. C. & Lincs, J. F. A linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    Article  Google Scholar 

  102. Darden, T., & York, D. An N  log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  Google Scholar 

  103. Berendsen, H. J. C., van Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    Article  Google Scholar 

  104. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Article  Google Scholar 

  105. Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    Article  Google Scholar 

  106. Brehm, M. & Kirchner, B. TRAVIS-a free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories. J. Cheminform. 4, F1 (2011).

  107. Brehm, M., Thomas, M., Gehrke, S. & Kirchner, B. TRAVIS—A free analyzer for trajectories from molecular simulation. J. Chem. Phys. 152, 164105 (2020).

    Article  Google Scholar 

  108. Bannwarth, C., Ehlert, S. & Grimme, S. GFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 15, 1652–1671 (2019).

    Article  Google Scholar 

  109. Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput Mol. Sci. 2, 73–78 (2012).

    Article  Google Scholar 

  110. Roemelt, M., Maganas, D., DeBeer, S. & Neese, F. A combined DFT and restricted open-shell configuration interaction method including spin-orbit coupling: application to transition metal L-edge X-ray absorption spectroscopy. J. Chem. Phys. 138, 204101 (2013).

    Article  Google Scholar 

  111. Maganas, D. et al. First principles calculations of the structure and V L-edge X-ray absorption spectra of V2O5 using local pair natural orbital coupled cluster theory and spin–orbit coupled configuration interaction approaches. Phys. Chem. Chem. Phys. 15, 7260–7276 (2013).

    Article  Google Scholar 

  112. Axel, D. B. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  Google Scholar 

  113. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988).

    Article  Google Scholar 

  114. Schäfer, A., Horn, H. & Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 97, 2571–2577 (1992).

    Article  Google Scholar 

  115. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  Google Scholar 

  116. Kendall, R. A. & Früchtl, H. A. The impact of the resolution of the identity approximate integral method on modern ab initio algorithm development. Theor. Chem. Acc. 97, 158–163 (1997).

    Article  Google Scholar 

  117. Feyereisen, M., Fitzgerald, G. & Komornicki, A. Use of approximate integrals in ab initio theory. An application in MP2 energy calculations. Chem. Phys. Lett. 208, 359–363 (1993).

    Article  Google Scholar 

  118. Pantazis, D. A., Chen, X.-Y., Landis, C. R. & Neese, F. All-electron scalar relativistic basis sets for third-row transition metal atoms. J. Chem. Theory Comput. 4, 908–919 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the advice on the manuscript from B. Dunn at the University of California, Los Angeles, and technical support from the Maryland NanoCenter. STXM was performed at the Canadian Light Source, a national research facility of the University of Saskatchewan. We thank the computational resources provided on Bebop, a high-performance computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. This work was supported by the US Department of Energy (DOE: Grant No. DE-EE0008856 to C.W.; and Grant No. DE-AC05-76RL01830 to C.W.) and DOE, Office of Energy Efficiency and Renewable Energy (Grant No. DE-EE0009183 to C.W.). The XAS test was supported by DOE, Battery500 Consortium (Grant No. DE-SC0012704 to S.T., X.Y. and E.H.) and DOE, Office of Science User Facilities (Grant No. DE-SC0012704 to Brookhaven National Laboratory). We also thank the Analytical NMR Service & Research Center at the University of Maryland, College Park, for using 600 MHz solution and 500 MHz solid-state NMR spectrometers (supported by the National Science Foundation under Grant No. NSF-1726058).

Author information

Authors and Affiliations

Authors

Contributions

W.Z. and C.W. proposed the research. W.Z. conceived the idea, performed the electrochemical, SEM and TEM experiments, and wrote the manuscript. V.K. and N.K.D. performed the molecular dynamics simulations and DFT calculations. S.L. helped with the electrochemical experiments and the SEM. P.B. helped with the FTIR. J.Z. and J.W. performed the STXM. S.T., X.Y. and E.H. performed the XAS. Z.W. helped with the analysis of the calculation results. J.X., H.W. and X.Z. helped with editing the manuscript. H.Y. performed the Instron mechanical test. B.L. and A.L. performed the XPS and analysed the results. F.C. performed the NMR spectroscopy. S.R. drew the schematic, edited the manuscript and supervised the analysis of the polymer properties. A.N. supervised the simulations and calculations, and C.W. supervised the study and the manuscript writing. All authors discussed the results.

Corresponding authors

Correspondence to Srinivasa R. Raghavan, Anh T. Ngo or Chunsheng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Grazia Accardo, Kan Hatakeyama-Sato and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–8, Figs. 1–63, Table 1 and refs. 1–19.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Koverga, V., Liu, S. et al. Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries. Nat Energy 9, 386–400 (2024). https://doi.org/10.1038/s41560-023-01443-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01443-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing