Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electron-withdrawing organic ligand for high-efficiency all-perovskite tandem solar cells

Abstract

Tin–lead mixed perovskite-based tandem solar cells show promise. However, the inherent oxidation of tin remains a challenge for achieving high power conversion efficiency and device stability. In this study, we present an approach to address this challenge by developing an electron-withdrawing chloromethyl phosphonic acid ligand based on the substituent effect, designed to mitigate tin oxidation in tin–lead mixed perovskite materials. The introduction of this electron-withdrawing ligand improves the redox potential of the tin adduct. Furthermore, it leads to a substantial increase in the ionization potential of the perovskite structure. Through comparative analysis with conventional coordinating molecules, we reveal that the electron-withdrawing ligand is more effective in suppressing tin oxidation and reducing the defect density within the tin-based perovskite film. Using our approach, we demonstrate certified efficiency of 26.96% for all-perovskite tandem solar cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Antioxidant behaviour of phosphonic acids on SnI2.
Fig. 2: Analysis for the antioxidants in perovskite films.
Fig. 3: Analysis of defects in perovskite films.
Fig. 4: Characterization of carrier transport and JV performance.
Fig. 5: Characterization of 2-T tandem PSCs.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are included in the published article and its supplementary information and source data provided with this paper.

References

  1. Wang, B. et al. Robust molecular dipole-enabled defect passivation and control of energy-level alignment for high-efficiency perovskite solar cells. Angew. Chem. Int. Ed. 60, 17664–17670 (2021).

    Article  CAS  Google Scholar 

  2. Wang, L. et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 363, 265–270 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Li, F. et al. Effects of alkyl chain length on crystal growth and oxidation process of two-dimensional tin halide perovskites. ACS Energy Lett. 5, 1422–1429 (2020).

    Article  CAS  Google Scholar 

  4. Chen, Q. et al. Unveiling roles of tin fluoride additives in high-efficiency low-bandgap mixed tin-lead perovskite solar cells. Adv. Energy Mater. 11, 2101045 (2021).

    Article  CAS  Google Scholar 

  5. He, D. et al. Interfacial defect passivation by novel phosphonium salts yields 22% efficiency perovskite solar cells: experimental and theoretical evidence. EcoMat 4, 12158 (2021).

    Article  Google Scholar 

  6. Juarez-Perez, E. J. et al. Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. J. Mater. Chem. A 6, 9604–9612 (2018).

    Article  CAS  Google Scholar 

  7. Datta, K. et al. Monolithic all-perovskite tandem solar cells with minimized optical and energetic losses. Adv. Mater. 34, e2110053 (2022).

    Article  PubMed  Google Scholar 

  8. Yu, Z. et al. Solution-processed ternary tin (II) alloy as hole-transport layer of Sn-Pb perovskite solar cells for enhanced efficiency and stability. Adv. Mater. 34, e2205769 (2022).

    Article  PubMed  Google Scholar 

  9. Jiang, Q. et al. Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. Science 378, 1295–1300 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Datta, K. et al. Monolithic all‐perovskite tandem solar cells with minimized optical and energetic losses. Adv. Mater. 34, 2110053 (2022).

    Article  CAS  Google Scholar 

  11. Wu, P. et al. Efficient and thermally stable all-perovskite tandem solar cells using all‐FA narrow‐bandgap perovskite and metal-oxide-based tunnel junction. Adv. Energy Mater. 12, 2202948 (2022).

    Article  MathSciNet  CAS  Google Scholar 

  12. Wen, J. et al. Steric engineering enables efficient and photostable wide-bandgap perovskites for all‐perovskite tandem solar cells. Adv. Mater. 34, 2110356 (2022).

    Article  CAS  Google Scholar 

  13. Adjokatse, S. et al. Effect of the device architecture on the performance of FA0.85MA0.15PbBr0.45I2.55 planar perovskite solar cells. Adv. Mater. Interfaces 6, 1801667 (2019).

    Article  Google Scholar 

  14. Yu, Z. et al. Solution‐processed ternary tin (II) alloy as hole-transport layer of Sn–Pb perovskite solar cells for enhanced efficiency and stability. Adv. Mater. 34, 2205769 (2022).

    Article  CAS  Google Scholar 

  15. Wang, J. et al. Carbazole-based hole transport polymer for methylammonium-free tin–lead perovskite solar cells with enhanced efficiency and stability. ACS Energy Lett. 7, 3353–3361 (2022).

    Article  CAS  Google Scholar 

  16. Yu, Z. et al. Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nat. Energy 5, 657–665 (2020).

    Article  ADS  CAS  Google Scholar 

  17. Yan, N. et al. Ligand‐Anchoring‐Induced Oriented Crystal Growth for High‐Efficiency Lead‐Tin Perovskite Solar Cells. Adv. Funct. Mater. 32, 2201384 (2022).

    Article  CAS  Google Scholar 

  18. Yu, Z. et al. Gradient doping in Sn-Pb perovskites by barium ions for efficient single-junction and tandem solar cells. Adv. Mater. 34, e2110351 (2022).

    Article  PubMed  Google Scholar 

  19. Zhu, J. et al. A donor–acceptor-type hole-selective contact reducing non-radiative recombination losses in both subcells towards efficient all-perovskite tandems. Nat. Energy 8, 714–724 (2023).

    Article  ADS  CAS  Google Scholar 

  20. Lin, R. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Lin, R. et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature 620, 994–1000 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. He, R. et al. Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature 618, 80–86 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Henry, C. H. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J. Appl. Phys. 51, 4494–4500 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Islam, M. R. et al. Recent progress and future prospects for light management of all‐perovskite tandem solar cells. Adv. Mater. Inter. 9, 2101144 (2022).

    Article  CAS  Google Scholar 

  25. Leijtens, T., Bush, K. A., Prasanna, R. & McGehee, M. D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828–838 (2018).

    Article  ADS  CAS  Google Scholar 

  26. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p‐n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  ADS  CAS  Google Scholar 

  27. Meng, X. et al. Highly stable and efficient FASnI3-based perovskite solar cells by introducing hydrogen bonding. Adv. Mater. 31, 1903721 (2019).

    Article  CAS  Google Scholar 

  28. Chen, L. et al. Incorporating Potassium Citrate to Improve the Performance of Tin‐Lead Perovskite Solar Cells. Adv. Ener. Mater. 13, 2301218 (2023).

    Article  CAS  Google Scholar 

  29. Cui, D. et al. Making room for growing oriented FASnI3 with large grains via cold precursor solution. Adv. Funct. Mater. 31, 2100931 (2021).

    Article  CAS  Google Scholar 

  30. Pascual, J. et al. Fluoride chemistry in tin halide perovskites. Angew. Chem. Int. Ed. 60, 21583–21591 (2021).

    Article  CAS  Google Scholar 

  31. Wang, F. et al. 2D-quasi-2D-3D hierarchy structure for tin perovskite solar cells with enhanced efficiency and stability. Joule 2, 2732–2743 (2018).

    Article  CAS  Google Scholar 

  32. Yang, J. et al. π-Conjugated carbazole cations enable wet-stable quasi-2D perovskite photovoltaics. ACS Energy Lett. 7, 4451–4458 (2022).

    Article  CAS  Google Scholar 

  33. Lin, R. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nat. Energy 4, 864–873 (2019).

    Article  ADS  CAS  Google Scholar 

  34. Zhang, M., Chi, D., Wang, J., Wu, F. & Huang, S. Improved performance of lead-tin mixed perovskite solar cells with PEDOT:PSS treated by hydroquinone. Sol. Energy 201, 589–595 (2020).

    Article  ADS  CAS  Google Scholar 

  35. Zhang, W. et al. Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells. Nat. Commun. 6, 10030 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Wang, C. et al. Self-repairing tin-based perovskite solar cells with a breakthrough efficiency over 11%. Adv. Mater. 32, e1907623 (2020).

    Article  PubMed  Google Scholar 

  37. Xiao, K. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5, 870–880 (2020).

    Article  ADS  Google Scholar 

  38. Tai, Q. et al. Antioxidant grain passivation for air-stable tin-based perovskite solar cells. Angew. Chem. Int. Ed. 58, 806–810 (2019).

    Article  CAS  Google Scholar 

  39. Liang, H. et al. High color purity lead-free perovskite light-emitting diodes via Sn stabilization. Adv. Sci. 7, 1903213 (2020).

    Article  CAS  Google Scholar 

  40. Ning, Z. et al. Air-stable n-type colloidal quantum dot solids. Nat. Mater. 13, 822–828 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Milliron, D. J. Quantum dot solar cells the surface plays a core role. Nat. Mater. 13, 772–773 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Li, X. et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid omega-ammonium chlorides. Nat. Chem. 7, 703–711 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Li, C. et al. Wet and dry processes for the selective transformation of phosphonates to phosphonic acids catalyzed by Bronsted acids. J. Org. Chem. 85, 14411–14419 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Ban, H. et al. Stabilization of inorganic CsPb0.5Sn0.5I2Br perovskite compounds by antioxidant tea polyphenol. Sol. RRL 4, 1900457 (2019).

    Article  Google Scholar 

  45. Joy, S. et al. How additives for tin halide perovskites influence the Sn4+ concentration. J. Mater. Chem. A 10, 13278–13285 (2022).

    Article  CAS  Google Scholar 

  46. Hiszpanski, A. M. et al. Halogenation of a nonplanar molecular semiconductor to tune energy levels and bandgaps for electron transport. Chem. Mater. 27, 1892–1900 (2015).

    Article  CAS  Google Scholar 

  47. Wang, Z. et al. Modulating molecular orbital energy level of lithium polysulfide for high-rate and long-life lithium-sulfur batteries. Energy Storage Mater. 24, 373–378 (2020).

    Article  Google Scholar 

  48. Ghimire, N. et al. Interface engineering of Pb-Sn low-bandgap perovskite solar cells for improved efficiency and stability. Sol. RRL 6, 2100945 (2022).

    Article  CAS  Google Scholar 

  49. Han, G. et al. Toward efficient and stable perovskite photovoltaics with fluorinated phosphonate salt surface passivation. ACS Appl. Energy Mater. 4, 2716–2723 (2021).

    Article  CAS  Google Scholar 

  50. Guo, W. et al. Broad-spectrum liquid- and gas-phase decontamination of chemical warfare agents by one-dimensional heteropolyniobates. Angew. Chem. Int. Ed. 55, 7403–7407 (2016).

    Article  CAS  Google Scholar 

  51. Hu, S. et al. Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells. Energy Environ. Sci. 15, 2096–2107 (2022).

    Article  CAS  Google Scholar 

  52. Liu, J. et al. Effects of compositional engineering and surface passivation on the properties of halide perovskites: a theoretical understanding. Phys. Chem. Chem. Phys. 22, 19718–19724 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Peng, C. et al. Reducing Energy Disorder for Efficient and Stable Sn−Pb Alloyed Perovskite Solar Cells. Angew. Chem. Int. Ed. 61, e202201209 (2022).

    Article  ADS  CAS  Google Scholar 

  54. Lv, S. et al. Antisolvent‐free fabrication of efficient and stable Sn–Pb perovskite solar cells. Sol. RRL 5, 2100675 (2021).

    Article  MathSciNet  CAS  Google Scholar 

  55. Hu, H. et al. Crystallization Regulation and Morphological Evolution for HTM‐free Tin‐Lead (1.28eV) Alloyed Perovskite Solar Cells. Energy Environ. Mater. 6, e12322 (2023).

    Article  CAS  Google Scholar 

  56. Zhang, W. H. et al. Defect passivation by a multifunctional phosphate additive toward improvements of efficiency and stability of perovskite solar cells. ACS Appl. Mater. Inter. 14, 31911–31919 (2022).

    Article  CAS  Google Scholar 

  57. Han, Q. et al. Single crystal formamidinium lead iodide FAPbI3: insight into the structural, optical, and electrical properties. Adv. Mater. 28, 2253–2258 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Liu, Y., Liu, Z. & Lee, E.-C. High-performance inverted perovskite solar cells using doped poly(triarylamine) as the hole transport layer. ACS Appl. Energy Mater. 2, 1932–1942 (2019).

    Article  CAS  Google Scholar 

  59. Han, Q. et al. Single crystal formamidinium lead iodide: insight into the structural, optical, and electrical properties. Adv. Mater. 28, 2253–2258 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Endres, J. et al. Valence and conduction band densities of states of metal halide perovskites: a combined experimental–theoretical study. J. Phys. Chem. Lett. 7, 2722–2729 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, C. et al. Halide-substituted electronic properties of organometal halide perovskite films: direct and inverse photoemission studies. ACS Appl. Mater. Interfaces 8, 11526–11531 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Olthof, S. & Meerholz, K. Substrate-dependent electronic structure and film formation of MAPbI(3) perovskites. Sci. Rep. 7, 40267 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen, B. et al. Bifacial all-perovskite tandem solar cells. Sci. Adv. 8, eadd0377 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen, H. et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Li, H. et al. Revealing the output power potential of bifacial monolithic all-perovskite tandem solar cells. eLight 2, 21 (2022).

    Article  CAS  Google Scholar 

  66. Hou, S., Gangishetty, M. K., Quan, Q. & Congreve, D. N. Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule 2, 2421–2433 (2018).

    Article  CAS  Google Scholar 

  67. Liao, Y. et al. Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. J. Am. Chem. Soc. 139, 6693–6699 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Han, Q. et al. Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv. Mater. 28, 2253–2258 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  PubMed  Google Scholar 

  70. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Hamann, D. R. Erratum: Optimized norm-conserving Vanderbilt pseudopotentials [Phys. Rev. B 88, 085117 (2013)]. Phys. Rev. B 95, 239906 (2017).

    Article  ADS  Google Scholar 

  72. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the National Natural Science Foundation of China (grant nos. 61935016, 92056119, 22175118), National Key Research and Development Programme of China (under grant no. 2021YFA0715502), the Double First-Class Initiative Fund of ShanghaiTech University and the Science and Technology Commission of Shanghai Municipality (grant nos. 20XD1402500, 20JC1415800 and 21ZR1442100). We appreciate the Instrument Analysis Center and Centre for High resolution Electron Microscopy (CħEM) of ShanghaiTech University. We thank W. Liu and Y. Huang for helping with the cyclic voltammetry measurement and analysis. The computational support is provided by the high performance computing facility in ShanghaiTech University.

Author information

Authors and Affiliations

Authors

Contributions

Z.N. and D.Y. conceived the idea and designed the experiment. D.Y. and M.P. conducted the tandem solar cell fabrication. D.Y., G.L. and W.L. fabricated and characterized perovskite films and devices. X.W. and F.Z. conducted the theoretical simulation. S.C. assisted with the cyclic voltammetry measurement. W.Z. performed the TPC testing of the perovskite devices. H.W. performed the electroluminescence testing of the perovskite devices. Y.L. and Q.J. performed the field-effect transistor measurement. P.C. guided the UPS measurements. D.Y. and Z.N. wrote the manuscript. All authors discussed the results and contributed to the revision of the manuscript. Z.N. supervised the project.

Corresponding author

Correspondence to Zhijun Ning.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Kenneth Graham, Feng Yan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Characterization of perovskite cross-section SEM.

SEM cross-sectional images of (a) the control film, (b) the film with MP and (c) the film with CMP (Scale bar 200 nm).

Extended Data Fig. 2 Infrared characterization of coordination molecules.

IR spectra of (a) perovskite film with MP, (b) MP powder, (c) perovskite film with CMP, and (d) CMP powder.

Extended Data Fig. 3 Theoretical calculation of perovskite ionization potential.

Ionization potential (IP) of the control, MP-coordinated, and CMP-coordinated FASnI3 at FAI terminals calculated by DFT.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20 and Tables 1–4.

Reporting Summary

Source data

Source Data Fig. 4d

The efficiency data of solar cell devices in Fig. 4d.

Source Data Fig. 5b

The efficiency data of solar cell devices in Fig. 5b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, D., Pan, M., Liu, G. et al. Electron-withdrawing organic ligand for high-efficiency all-perovskite tandem solar cells. Nat Energy 9, 298–307 (2024). https://doi.org/10.1038/s41560-023-01441-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01441-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing