Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Energy storage solutions to decarbonize electricity through enhanced capacity expansion modelling

Abstract

To meet ambitious global decarbonization goals, electricity system planning and operations will change fundamentally. With increasing reliance on variable renewable energy resources, energy storage is likely to play a critical accompanying role to help balance generation and consumption patterns. As grid planners, non-profit organizations, non-governmental organizations, policy makers, regulators and other key stakeholders commonly use capacity expansion modelling to inform energy policy and investment decisions, it is crucial that these processes capture the value of energy storage in energy-system decarbonization. Here we conduct an extensive review of literature on the representation of energy storage in capacity expansion modelling. We identify challenges related to enhancing modelling capabilities to inform decarbonization policies and electricity system investments, and to improve societal outcomes throughout the clean energy transition. We further identify corresponding research activities that can help overcome these challenges and conclude by highlighting tangible real-world outcomes that will result from pursuing these research activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characteristics of zero-carbon power systems.
Fig. 2: Key components of CEM.
Fig. 3: Sample SOC management profile.

Similar content being viewed by others

References

  1. Hobbs, B. F. Optimization methods for electric utility resource planning. Eur. J. Oper. Res. 83, 1–20 (1995).

    MATH  Google Scholar 

  2. Oree, V., Sayed Hassen, S. Z. & Fleming, P. J. Generation expansion planning optimisation with renewable energy integration: a review. Renew. Sustain. Energy Rev. 69, 790–803 (2017).

    Google Scholar 

  3. Koltsaklis, N. E. & Dagoumas, A. S. State-of-the-art generation expansion planning: a review. Appl. Energy 230, 563–589 (2018).

    Google Scholar 

  4. Dagoumas, A. S. & Koltsaklis, N. E. Review of models for integrating renewable energy in the generation expansion planning. Appl. Energy 242, 1573–1587 (2019).

    Google Scholar 

  5. Gacitua, L. et al. A comprehensive review on expansion planning: models and tools for energy policy analysis. Renew. Sustain. Energy Rev. 98, 346–360 (2018).

    Google Scholar 

  6. Bloom, J. A. Long-range generation planning using decomposition and probabilistic simulation. IEEE Trans. Power Appar. Syst. PAS-101, 797–802 (1982).

    Google Scholar 

  7. Mo, B., Hegge, J. & Wangensteen, I. Stochastic generation expansion planning by means of stochastic dynamic programming. IEEE Trans. Power Syst. 6, 662–668 (1991).

    Google Scholar 

  8. Eto, J. H. An overview of analysis tools for integrated resource planning. Energy 15, 969–977 (1990).

    Google Scholar 

  9. Haas, J. et al. Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems—a review. Renew. Sustain. Energy Rev. 80, 603–619 (2017).

    Google Scholar 

  10. Babatunde, O. M., Munda, J. L. & Hamam, Y. A comprehensive state-of-the-art survey on power generation expansion planning with intermittent renewable energy source and energy storage. Int. J. Energy Res. 43, 6078–6107 (2019).

    Google Scholar 

  11. Ringkjøb, H.-K., Haugan, P. M. & Solbrekke, I. M. A review of modelling tools for energy and electricity systems with large shares of variable renewables. Renew. Sustain. Energy Rev. 96, 440–459 (2018).

    Google Scholar 

  12. Planning for the Renewable Future: Long-Term Modelling and Tools to Expand Variable Renewable Power in Emerging Economies (IRENA, 2017); https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/IRENA_Planning_for_the_Renewable_Future_2017.pdf

  13. Ferrari, J. in Electric Utility Resource Planning (ed. Ferrari, J.) Ch. 5, 139–172 (Elsevier, 2021).

  14. Stoll, H. G. Least-Cost Electric Utility Planning (Wiley, 1989).

  15. Ter-Gazarian, A. Energy Storage for Power Systems (Peter Peregrinus, 1994).

  16. Hobbs, B. F. & Meier, P. M. Multicriteria methods for resource planning: an experimental comparison. IEEE Trans. Power Syst. 9, 1811–1817 (1994).

    Google Scholar 

  17. Palmintier, B. S. & Webster, M. D. Impact of operational flexibility on electricity generation planning with renewable and carbon targets. IEEE Trans. Sustain. Energy 7, 672–684 (2016).

    Google Scholar 

  18. Cole, W. J. et al. Quantifying the challenge of reaching a 100% renewable energy power system for the United States. Joule 5, 1732–1748 (2021).

    Google Scholar 

  19. Brown, P. R. & Botterud, A. The value of inter-regional coordination and transmission in decarbonizing the US electricity system. Joule 5, 115–134 (2021).

    Google Scholar 

  20. Sepulveda, N. A., Jenkins, J. D., Edington, A., Mallapragada, D. S. & Lester, R. K. The design space for long-duration energy storage in decarbonized power systems. Nat. Energy 6, 506–516 (2021).

    Google Scholar 

  21. Tröndle, T., Lilliestam, J., Marelli, S. & Pfenninger, S. Trade-offs between geographic scale, cost and infrastructure requirements for fully renewable electricity in Europe. Joule 4, 1929–1948 (2020).

    Google Scholar 

  22. Zeyringer, M., Price, J., Fais, B., Li, P.-H. & Sharp, E. Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather. Nat. Energy 3, 395–403 (2018).

    Google Scholar 

  23. Spyrou, E., Hobbs, B. F., Bazilian, M. D. & Chattopadhyay, D. Planning power systems in fragile and conflict-affected states. Nat. Energy 4, 300–310 (2019).

    Google Scholar 

  24. Davidson, M. R., Zhang, D., Xiong, W., Zhang, X. & Karplus, V. J. Modelling the potential for wind energy integration on China’s coal-heavy electricity grid. Nat. Energy 1, 16086 (2016).

    Google Scholar 

  25. Rudnick, I. et al. Decarbonization of the Indian electricity sector: technology choices and policy trade-offs. iScience 25, 104017 (2022).

    Google Scholar 

  26. Guo, F. et al. Implications of intercontinental renewable electricity trade for energy systems and emissions. Nat. Energy 7, 1144–1156 (2022).

    Google Scholar 

  27. Bistline, J. E. T. Roadmaps to net-zero emissions systems: emerging insights and modeling challenges. Joule 5, 2551–2563 (2021).

    Google Scholar 

  28. Net Zero by 2050: A Roadmap for the Global Energy Sector (IEA, 2021); https://www.iea.org/reports/net-zero-by-2050

  29. Larson, E. et al. Net-Zero America: Potential Pathways, Infrastructure and Impacts (Net-Zero America, 2021); https://netzeroamerica.princeton.edu/

  30. Jenkins, J. D., Luke, M. & Thernstrom, S. Getting to zero carbon emissions in the electric power sector. Joule 2, 2498–2510 (2018).

    Google Scholar 

  31. Holttinen, H. et al. System impact studies for near 100% renewable energy systems dominated by inverter based variable generation. IEEE Trans. Power Syst. 37, 3249–3258 (2022).

    Google Scholar 

  32. Mills, A. D., Levin, T., Wiser, R., Seel, J. & Botterud, A. Impacts of variable renewable energy on wholesale markets and generating assets in the United States: a review of expectations and evidence. Renew. Sustain. Energy Rev. 120, 109670 (2020).

    Google Scholar 

  33. de Sisternes, F. J., Jenkins, J. D. & Botterud, A. The value of energy storage in decarbonizing the electricity sector. Appl. Energy 175, 368–379 (2016).

    Google Scholar 

  34. Jafari, M., Botterud, A. & Sakti, A. Decarbonizing power systems: a critical review of the role of energy storage. Renew. Sustain. Energy Rev. 158, 112077 (2022).

    Google Scholar 

  35. Lund, P. D., Lindgren, J., Mikkola, J. & Salpakari, J. Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renew. Sustain. Energy Rev. 45, 785–807 (2015).

    Google Scholar 

  36. Power System Flexibility for the Energy Transition, Part 1: Overview for Policy Makers (IRENA, 2018); https://www.irena.org/publications/2018/Nov/Power-system-flexibility-for-the-energy-transition

  37. Zhou, Z., Kwon, J., Mahendrasinh Jhala, K. & Koritarov, V. A Computational Framework for Energy Storage Participation in Transmission Planning with Electricity Market Participation (OSTI, 2022); https://doi.org/10.2172/1889657

  38. Twitchell, J. B., Bhatnagar, D., Barrows, S. E. & Mongird, K. Enabling Principles for Dual Participation by Energy Storage as a Transmission and Market Asset (OSTI, 2022); https://doi.org/10.2172/1846604

  39. Bødal, E. F., Mallapragada, D., Botterud, A. & Korpås, M. Decarbonization synergies from joint planning of electricity and hydrogen production: a Texas case study. Int. J. Hydrog. Energy 45, 32899–32915 (2020).

    Google Scholar 

  40. Jenkins, J. D. & Sepulveda, N. A. Long-duration energy storage: a blueprint for research and innovation. Joule 5, 2241–2246 (2021).

    Google Scholar 

  41. Bistline, J. et al. Energy storage in long-term system models: a review of considerations, best practices and research needs. Prog. Energy 2, 032001 (2020).

    Google Scholar 

  42. Pudjianto, D., Aunedi, M., Djapic, P. & Strbac, G. Whole-systems assessment of the value of energy storage in low-carbon electricity systems. IEEE Trans. Smart Grid 5, 1098–1109 (2014).

    Google Scholar 

  43. Mao, J., Jafari, M. & Botterud, A. Planning low-carbon distributed power systems: evaluating the role of energy storage. Energy 238, 121668 (2022).

    Google Scholar 

  44. Parzen, M., Neumann, F., Van Der Weijde, A. H., Friedrich, D. & Kiprakis, A. Beyond cost reduction: improving the value of energy storage in electricity systems. Carb. Neutrality 1, 26 (2022).

    Google Scholar 

  45. Xu, B., Zhao, J., Zheng, T., Litvinov, E. & Kirschen, D. S. Factoring the cycle aging cost of batteries participating in electricity markets. IEEE Trans. Power Syst. 33, 2248–2259 (2018).

    Google Scholar 

  46. Zhou, Z., Botterud, A. & Levin, T. Price Formation in Zero-Carbon Electricity Markets: The Role of Hydropower (OSTI, 2022); https://doi.org/10.2172/1877029

  47. Koritarov, V. et al. Pumped Storage Hydropower Valuation Guidebook, 361 (ANL, 2021); https://publications.anl.gov/anlpubs/2021/03/166807.pdf

  48. Cohen, S. & Mowers, M. Advanced Hydropower and PSH Capacity Expansion Modeling: Final Report on HydroWIRES D1 Improvements to Capacity Expansion Modeling, NREL/TP-6A40-80714, 1877873 (OSTI, 2022); https://www.osti.gov/servlets/purl/1877873/

  49. Voisin, N., Bain, D., Macknick, J. & O’Neil, R. Improving Hydropower Representation in Power System Models, 33 (PNNL, 2020); https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-29878.pdf

  50. Merrick, J. H. & Weyant, J. P. On choosing the resolution of normative models. Eur. J. Oper. Res. 279, 511–523 (2019).

    Google Scholar 

  51. Sioshansi, R., Denholm, P., Jenkin, T. & Weiss, J. Estimating the value of electricity storage in PJM: arbitrage and some welfare effects. Energy Econ. 31, 269–277 (2009).

    Google Scholar 

  52. Rand, J., Bolinger, M., Wiser, R., Jeong, S. & Paulos, B. Queued Up: Characteristics of Power Plants Seeking Transmission Interconnection as of the End of 2020 (Berkeley Lab, 2021); https://emp.lbl.gov/publications/queued-characteristics-power-plants

  53. Bistline, J. E. T. The importance of temporal resolution in modeling deep decarbonization of the electric power sector. Environ. Res. Lett. 16, 084005 (2021).

    Google Scholar 

  54. Millstein, D. et al. Empirical Estimates of Transmission Value using Locational Marginal Prices (Berkeley Lab, 2022); https://doi.org/10.2172/1879833

  55. Draft ISO/EDC/LDC Problem Statement and Call to Action on LNG and Energy Adequacy Federal Energy Regulatory Commission New England Winter Gas-Electric Forum (ISO, 2022); https://isonewswire.com/wp-content/uploads/2022/08/DraftFERCTechConferenceEverettandEnergyAdequacyProblemStatement-8.29-final.pdf

  56. Proposed Firm Gas FFSS Product (ERCOT, 2022); https://www.ercot.com/files/docs/2022/12/13/Firm-Gas-FFSS-Product-Framework-Proposal-ERCOT-Draft-11-22-22.docx

  57. Pfenninger, S. Dealing with multiple decades of hourly wind and PV time series in energy models: a comparison of methods to reduce time resolution and the planning implications of inter-annual variability. Appl. Energy 197, 1–13 (2017).

    Google Scholar 

  58. Dowling, J. A. et al. Role of long-duration energy storage in variable renewable electricity systems. Joule 4, 1907–1928 (2020).

    Google Scholar 

  59. Jafari, M., Korpås, M. & Botterud, A. Power system decarbonization: impacts of energy storage duration and interannual renewables variability. Renew. Energy 156, 1171–1185 (2020).

    Google Scholar 

  60. Brown, P. T., Farnham, D. J. & Caldeira, K. Meteorology and climatology of historical weekly wind and solar power resource droughts over western North America in ERA5. SN Appl. Sci. 3, 814 (2021).

    Google Scholar 

  61. Collins, S., Deane, P., Gallachóir, B. Ó., Pfenninger, S. & Staffell, I. Impacts of inter-annual wind and solar variations on the European power system. Joule 2, 2076–2090 (2018).

    Google Scholar 

  62. Ralston Fonseca, F. et al. Effects of climate change on capacity expansion decisions of an electricity generation fleet in the southeast U.S. Environ. Sci. Technol. 55, 2522–2531 (2021).

    Google Scholar 

  63. Diaz, D. Temperature Impacts on Electricity Demand: US-REGEN Load Projections for Climate Resilience (EPRI, 2021); https://www.epri.com/research/products/000000003002020013

  64. Scott, I. J., Carvalho, P. M. S., Botterud, A. & Silva, C. A. Long-term uncertainties in generation expansion planning: implications for electricity market modelling and policy. Energy 227, 120371 (2021).

    Google Scholar 

  65. Zheng, Q. P., Wang, J. & Liu, A. L. Stochastic optimization for unit commitment—a review. IEEE Trans. Power Syst. 30, 1913–1924 (2015).

    Google Scholar 

  66. Sun, X. A. & Conejo, A. J. Robust Optimization in Electric Energy Systems Vol. 313 (Springer, 2021).

  67. King, A. J. & Wallace, S. W. Modeling with Stochastic Programming (Springer, 2012).

  68. Walker, W. E., Lempert, R. J. & Kwakkel, J. H. in Encyclopedia of Operations Research and Management Science (eds Gass, S. I. & Fu, M. C.) 395–402 (Springer, 2013).

  69. Hobbs, B. F. et al. Adaptive transmission planning: implementing a new paradigm for managing economic risks in grid expansion. IEEE Power Energ. Mag. 14, 30–40 (2016).

    Google Scholar 

  70. Jorgenson, J., Awara, S., Stephen, G. & Mai, T. A systematic evaluation of wind’s capacity credit in the Western United States. Wind Energy 24, 1107–1121 (2021).

    Google Scholar 

  71. Mills, A. D. & Wiser, R. H. Changes in the economic value of photovoltaic generation at high penetration levels: a pilot case study of California. IEEE J. Photovolt. 3, 1394–1402 (2013).

    Google Scholar 

  72. Denholm, P., Nunemaker, J., Gagnon, P. & Cole, W. The potential for battery energy storage to provide peaking capacity in the United States. Renew. Energy 151, 1269–1277 (2020).

    Google Scholar 

  73. Keane, A. et al. Capacity value of wind power. IEEE Trans. Power Syst. 26, 564–572 (2011).

    Google Scholar 

  74. Murphy, S., Sowell, F. & Apt, J. A time-dependent model of generator failures and recoveries captures correlated events and quantifies temperature dependence. Appl. Energy 253, 113513 (2019).

    Google Scholar 

  75. Denholm, P. et al. The challenges of achieving a 100% renewable electricity system in the United States. Joule 5, 1331–1352 (2021).

    Google Scholar 

  76. Redefining Resource Adequacy for Modern Power Systems (Redefining Resource Adequacy Task Force, 2021); https://www.esig.energy/wp-content/uploads/2021/08/ESIG-Redefining-Resource-Adequacy-2021.pdf

  77. Sioshansi, R. et al. Energy-storage modeling: state-of-the-art and future research directions. IEEE Trans. Power Syst. 37, 860–875 (2022).

    Google Scholar 

  78. Poncelet, K., Delarue, E., Six, D., Duerinck, J. & D’haeseleer, W. Impact of the level of temporal and operational detail in energy-system planning models. Appl. Energy 162, 631–643 (2016).

    Google Scholar 

  79. Schyska, B. U., Kies, A., Schlott, M., Bremen, Lvon & Medjroubi, W. The sensitivity of power system expansion models. Joule 5, 2606–2624 (2021).

    Google Scholar 

  80. Helistö, N., Kiviluoma, J. & Reittu, H. Selection of representative slices for generation expansion planning using regular decomposition. Energy 211, 118585 (2020).

    Google Scholar 

  81. Scott, I. J., Carvalho, P. M. S., Botterud, A. & Silva, C. A. Clustering representative days for power systems generation expansion planning: capturing the effects of variable renewables and energy storage. Appl. Energy 253, 113603 (2019).

    Google Scholar 

  82. Williams, J. H. et al. Carbon-neutral pathways for the United States. AGU Adv. 2, e2020AV000284 (2021).

    Google Scholar 

  83. de Guibert, P., Shirizadeh, B. & Quirion, P. Variable time-step: a method for improving computational tractability for energy system models with long-term storage. Energy 213, 119024 (2020).

    Google Scholar 

  84. Tejada-Arango, D. A., Domeshek, M., Wogrin, S. & Centeno, E. Enhanced representative days and system states modeling for energy storage investment analysis. IEEE Trans. Power Syst. 33, 6534–6544 (2018).

    Google Scholar 

  85. Kotzur, L., Markewitz, P., Robinius, M. & Stolten, D. Time series aggregation for energy system design: modeling seasonal storage. Appl. Energy 213, 123–135 (2018).

    Google Scholar 

  86. Sánchez-Pérez, P. A., Staadecker, M., Szinai, J., Kurtz, S. & Hidalgo-Gonzalez, P. Effect of modeled time horizon on quantifying the need for long-duration storage. Appl. Energy 317, 119022 (2022).

    Google Scholar 

  87. Best Practice Modeling to Achieve Low Carbon Grids: Why Today’s Grid Planning Tools Fall Short and How New Approaches Can Lower Electric Costs and Increase Reliability (Form Energy, 2020); https://formenergy.com/wp-content/uploads/2020/12/Form-Energy-4Q2020-Best-Practice-Modeling-whitepaper-12.21.20.pdf

  88. Sakti, A. et al. Enhanced representations of lithium-ion batteries in power systems models and their effect on the valuation of energy arbitrage applications. J. Power Sources 342, 279–291 (2017).

    Google Scholar 

  89. Munoz, F. D. & Watson, J.-P. A scalable solution framework for stochastic transmission and generation planning problems. Comput. Manag. Sci. 12, 491–518 (2015).

    MathSciNet  MATH  Google Scholar 

  90. Olivetti, E. A., Ceder, G., Gaustad, G. G. & Fu, X. Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1, 229–243 (2017).

    Google Scholar 

  91. Energy Storage Grand Challenge: Energy Storage Market Report (US Department of Energy, 2020); https://www.energy.gov/sites/prod/files/2020/12/f81/Energy%20Storage%20Market%20Report%202020_0.pdf

  92. Woodford, W. H., Burger, S., Ferrara, M. & Chiang, Y.-M. The iron-energy nexus: a new paradigm for long-duration energy storage at scale and clean steelmaking. One Earth 5, 212–215 (2022).

    Google Scholar 

  93. Fact Sheet: Four Ways the Inflation Reduction Acts Tax Incentives Will Support Building an Equitable Clean Energy Economy (US Department of the Treasury, 2022); https://home.treasury.gov/system/files/136/Fact-Sheet-IRA-Equitable-Clean-Energy-Economy.pdf

  94. Liu, Y., Hunter-Rinderle, R., Luo, C. & Sioshansi, R. How climate-related policy affects the economics of electricity generation. Curr. Sustain./Renew. Energy Rep 8, 17–30 (2021).

    Google Scholar 

  95. Peng, W. & Ou, Y. Integrating air quality and health considerations into power sector decarbonization strategies. Environ. Res. Lett. 17, 081002 (2022).

    Google Scholar 

  96. Conejo, A. J. & Sioshansi, R. Rethinking restructured electricity market design: lessons learned and future needs. Int. J. Electr. Power Energy Syst. 98, 520–530 (2018).

    Google Scholar 

  97. Hogan, W. W. Market design practices: which ones are best? [In my view]. IEEE Power Energ. Mag. 17, 100–104 (2019).

    Google Scholar 

  98. Mallapragada, D. et al. Electricity Pricing Problems in Future Renewables-dominant Power Systems (SSRN, 2022); https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4037741

  99. Wogrin, S., Tejada-Arango, D., Delikaraoglou, S. & Botterud, A. Assessing the impact of inertia and reactive power constraints in generation expansion planning. Appl. Energy 280, 115925 (2020).

    Google Scholar 

  100. Mays, J. & Jenkins, J. Electricity Markets under Deep Decarbonization (SSRN, 2022); https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4087528

  101. Bushnell, J., Harvey, S. M. & Hobbs, B. F. Opinion on Energy Storage and Distributed Energy Resources Phase 4 (Market Surveillance Committee of the California ISO, 2020); http://www.caiso.com/Documents/MSC-OpiniononEnergyStorageandDistributedResourcesPhase4-Sep8_2020.pdf

  102. Newbery, D. M. Climate change policy and its effect on market power in the gas market. J. Eur. Economic Assoc. 6, 727–751 (2008).

    Google Scholar 

  103. Downward, A. Carbon charges in electricity markets with strategic behavior and transmission. Energy J. 31, 159–166 (2010).

    Google Scholar 

  104. Yagi, K. & Sioshansi, R. Do renewables drive coal-fired generation out of electricity markets? Curr. Sustain. Renew. Energy Rep. 8, 222–232 (2021).

    Google Scholar 

  105. Carley, S., Engle, C. & Konisky, D. M. An analysis of energy justice programs across the United States. Energy Policy 152, 112219 (2021).

    Google Scholar 

  106. Tarekegne, B., O’Neil, R. & Twitchell, J. Energy storage as an equity asset. Curr. Sustain. Renew. Energy Rep. 8, 149–155 (2021).

    Google Scholar 

  107. Zhu, S., Mac Kinnon, M., Carlos-Carlos, A., Davis, S. J. & Samuelsen, S. Decarbonization will lead to more equitable air quality in California. Nat. Commun. 13, 5738 (2022).

    Google Scholar 

  108. Goforth, T. & Nock, D. Air pollution disparities and equality assessments of US national decarbonization strategies. Nat. Commun. 13, 7488 (2022).

    Google Scholar 

  109. Pickering, B., Lombardi, F. & Pfenninger, S. Diversity of options to eliminate fossil fuels and reach carbon neutrality across the entire European energy system. Joule 6, 1253–1276 (2022).

    Google Scholar 

  110. Neumann, F. & Brown, T. The near-optimal feasible space of a renewable power system model. Electr. Power Syst. Res. 190, 106690 (2021).

    Google Scholar 

  111. Sergi, B. J. et al. Optimizing emissions reductions from the US power sector for climate and health benefits. Environ. Sci. Technol. 54, 7513–7523 (2020).

    Google Scholar 

  112. Energy Equity Project. Energy Equity Framework: Combining Data and Qualitative Approaches to Ensure Equity in the Energy Transition (SEAS, 2022); https://seas.umich.edu/sites/all/files/2022_EEP_Report.pdf

  113. Lanckton, T. & DeVar, S. Justice in 100 Metrics: Tools for Measuring Equity in 100% Renewable Energy Policy Implementation (Initiative for Energy Justice, 2021); https://iejusa.org/wp-content/uploads/2021/03/Justice-in-100-Metrics-2021.pdf

Download references

Acknowledgements

This Review emerged from a workshop organized by Argonne National Laboratory on ‘Informing Storage Solutions to Decarbonize Electricity’ 2–3 November 2021 (https://www.anl.gov/esia/informing-storage-solutions-to-decarbonize-electricity). We acknowledge all participants and organizers of the workshop. This material is based, in part, on work supported by Laboratory Directed Research and Development (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the US Department of Energy under contract no. DE-AC02-06CH11357. Finally, we wish to recognize our co-author, George W. Crabtree, an energy trailblazer and true renaissance scientist, who passed away in January 2023. During his six-decade career at Argonne National Laboratory, George advanced several scientific disciplines and inspired colleagues and friends, here and around the world. His work and dedication to the global scientific community will not be forgotten.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audun Botterud.

Ethics declarations

Competing interests

J.D.J. is part owner of DeSolve, LLC, which provides techno-economic analysis and decision support for clean energy technology ventures and investors. He serves on the advisory board of Eavor Technologies Inc. and Rondo Energy and has an equity interest in each company. He also provides policy advisory services to Clean Air Task Force and serves as a technical advisor to MUUS Climate Partners and Energy Impact Partners. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Rolf Golombek, Eric S. Hittinger, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, T., Bistline, J., Sioshansi, R. et al. Energy storage solutions to decarbonize electricity through enhanced capacity expansion modelling. Nat Energy 8, 1199–1208 (2023). https://doi.org/10.1038/s41560-023-01340-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01340-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing