Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solar-driven liquid multi-carbon fuel production using a standalone perovskite–BiVO4 artificial leaf

Abstract

The synthesis of high-energy-density liquid fuels from CO2 and H2O powered by sunlight has the potential to create a circular economy. Despite the progress in producing simple gaseous products, the construction of unassisted photoelectrochemical devices for liquid multi-carbon production remains a major challenge. Here we assembled artificial leaf devices by integrating an oxide-derived Cu94Pd6 electrocatalyst with perovskite–BiVO4 tandem light absorbers that couple CO2 reduction with water oxidation. The wired Cu94Pd6|perovskite–BiVO4 tandem device provides a Faradaic efficiency of ~7.5% for multi-carbon alcohols (~1:1 ethanol and n-propanol), whereas the wireless standalone device produces ~1 µmol cm−2 alcohols after 20 h unassisted operation under air mass 1.5 G irradiation with a rate of ~40 µmol h1 gCu94Pd61. This study demonstrates the direct production of multi-carbon liquid fuels from CO2 over an artificial leaf and, therefore, brings us a step closer to using sunlight to generate value-added complex products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Artificial leaf overview and physical characterization of the bimetallic catalyst.
Fig. 2: Electrochemical analysis of activated CuxPdy catalysts.
Fig. 3: Mechanistic analysis of multi-carbon production over activated Cu94Pd6 catalyst at low overpotentials.
Fig. 4: Unassisted multi-carbon alcohol production using wired tandem BiVO4–perovskite|Cu94Pd6 devices and wireless standalone artificial leaves.

Similar content being viewed by others

Data availability

The raw data supporting the findings of this study are available from the University of Cambridge data repository: https://doi.org/10.17863/CAM.95679.

References

  1. Concepcion, J. J., House, R. L., Papanikolas, J. M. & Meyer, T. J. Chemical approaches to artificial photosynthesis. Proc. Natl Acad. Sci. USA 109, 15560–15564 (2012).

    Article  Google Scholar 

  2. Hammarström, L. & Hammes-Schiffer, S. Artificial photosynthesis and solar fuels. Acc. Chem. Res. 42, 1859–1860 (2009).

    Article  Google Scholar 

  3. Benson, E. E., Kubiak, C. P., Sathrum, A. J. & Smieja, J. M. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 38, 89–99 (2009).

    Article  Google Scholar 

  4. Zhuang, T.-T. et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat. Catal. 1, 946–951 (2018).

    Article  Google Scholar 

  5. Rahaman, M., Dutta, A., Zanetti, A. & Broekmann, P. Electrochemical reduction of CO2 into multicarbon alcohols on activated Cu mesh catalysts: an identical location (IL) study. ACS Catal. 7, 7946–7956 (2017).

    Article  Google Scholar 

  6. Zhuang, T.-T. et al. Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1, 421–428 (2018).

    Article  Google Scholar 

  7. Ji, L. et al. Highly selective electrochemical reduction of CO2 to alcohols on an FeP nanoarray. Angew. Chem. Int. Ed. 59, 758–762 (2020).

    Article  Google Scholar 

  8. Gu, Z. et al. Efficient electrocatalytic CO2 reduction to C2+ alcohols at defect-site-rich Cu surface. Joule 5, 429–440 (2021).

    Article  Google Scholar 

  9. Wang, Z. et al. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2, 17135 (2017).

    Article  Google Scholar 

  10. Swarnkar, A. et al. Quantum dot induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    Article  Google Scholar 

  11. Wang, Z. et al. High irradiance performance of metal–halide perovskites for concentrator photovoltaics. Nat. Energy 3, 855–861 (2018).

    Article  Google Scholar 

  12. Snaith, H. J. Present status and future prospects of perovskite photovoltaics. Nat. Mater. 17, 372–376 (2018).

    Article  Google Scholar 

  13. Andrei, V. et al. Scalable triple-cation mixed-halide perovskite–BiVO4 tandems for bias-free water splitting. Adv. Energy Mater. 8, 1801403 (2018).

    Article  Google Scholar 

  14. Zhang, H. et al. A sandwich-like organolead halide perovskite photocathode for efficient and durable photoelectrochemical hydrogen evolution in water. Adv. Energy Mater. 8, 1800795 (2018).

    Article  Google Scholar 

  15. Pornrungroj, C. et al. Bifunctional perovskite–BiVO4 tandem devices for uninterrupted solar and electrocatalytic water splitting cycles. Adv. Funct. Mater. 31, 2008182 (2021).

    Article  Google Scholar 

  16. Schreier, M. et al. Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics. Nat. Commun. 6, 7326 (2015).

    Article  Google Scholar 

  17. Gao, J. et al. Solar water splitting with perovskite/silicon tandem cell and TiC-supported Pt nanocluster electrocatalyst. Joule 3, 2930–2941 (2019).

    Article  Google Scholar 

  18. Luo, J. et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345, 1593–1596 (2014).

    Article  Google Scholar 

  19. Zhang, H. et al. Carbon encapsulation of organic–inorganic hybrid perovskite toward efficient and stable photo-electrochemical carbon dioxide reduction. Adv. Energy Mater. 10, 2002105 (2020).

    Article  Google Scholar 

  20. Bhattacharjee, S. et al. Reforming of soluble biomass- and plastic-derived waste using a bias-free Cu30Pd70|perovskite|Pt photoelectrochemical device. Adv. Funct. Mater. 32, 2109313 (2022).

    Article  Google Scholar 

  21. Chen, J. et al. Compositionally screened eutectic catalytic coatings on halide perovskite photocathodes for photoassisted selective CO2 reduction. ACS Energy Lett. 4, 1279–1286 (2019).

    Article  Google Scholar 

  22. Andrei, V., Reuillard, B. & Reisner, E. Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite–BiVO4 tandems. Nat. Mater. 19, 189–194 (2020).

    Article  Google Scholar 

  23. Rahaman, M. et al. Selective CO production from aqueous CO2 using a Cu96In4 catalyst and its integration into a bias-free solar perovskite–BiVO4 tandem device. Energy Environ. Sci. 13, 3536–3543 (2020).

    Article  Google Scholar 

  24. Huan, T. N. et al. Low-cost high-efficiency system for solar-driven conversion of CO2 to hydrocarbons. Proc. Natl Acad. Sci. USA 116, 9735–9740 (2019).

    Article  Google Scholar 

  25. Gurudayal et al. Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates. Energy Environ. Sci. 10, 2222–2230 (2017).

    Article  Google Scholar 

  26. Roh, I. et al. Photoelectrochemical CO2 reduction toward multicarbon products with silicon nanowire photocathodes interfaced with copper nanoparticles. J. Am. Chem. Soc. 144, 8002–8006 (2022).

    Article  Google Scholar 

  27. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  Google Scholar 

  28. Yu, J. et al. Recent progresses in electrochemical carbon dioxide reduction on copper-based catalysts toward multicarbon products. Adv. Funct. Mater. 31, 2102151 (2021).

    Article  Google Scholar 

  29. Edwardes Moore, E. et al. A semi-artificial photoelectrochemical tandem leaf with a CO2-to-formate efficiency approaching 1%. Angew. Chem. Int. Ed. 60, 26303–26307 (2021).

    Article  Google Scholar 

  30. Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    Article  Google Scholar 

  31. Hori, Y., Wakebe, H., Tsukamoto, T. & Koga, O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39, 1833–1839 (1994).

    Article  Google Scholar 

  32. Dickinson, H. L. A. & Symes, M. D. Recent progress in CO2 reduction using bimetallic electrodes containing copper. Electrochem. Commun. 135, 107212 (2022).

    Article  Google Scholar 

  33. Li, Y. C. et al. Binding site diversity promotes CO2 electroreduction to ethanol. J. Am. Chem. Soc. 141, 8584–8591 (2019).

    Article  Google Scholar 

  34. Ma, S. et al. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu–Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 139, 47–50 (2017).

    Article  Google Scholar 

  35. Lyu, Z. et al. Kinetically controlled synthesis of Pd–Cu janus nanocrystals with enriched surface structures and enhanced catalytic activities toward CO2 reduction. J. Am. Chem. Soc. 143, 149–162 (2021).

    Article  Google Scholar 

  36. Rahaman, M. et al. Selective n-propanol formation from CO2 over degradation-resistant activated PdCu alloy foam electrocatalysts. Green Chem. 22, 6497–6509 (2020).

    Article  Google Scholar 

  37. Li, J. et al. Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption. Nat. Commun. 11, 3685 (2020).

    Article  Google Scholar 

  38. Gao, D. F. et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 137, 4288–4291 (2015).

    Article  Google Scholar 

  39. Zheng, Y. et al. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 141, 7646–7659 (2019).

    Article  Google Scholar 

  40. Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

    Article  Google Scholar 

  41. van Santen, R. A., Neurock, M. & Shetty, S. G. Reactivity theory of transition-metal surfaces: a Brønsted−Evans−Polanyi linear activation energy−free-energy analysis. Chem. Rev. 110, 2005–2048 (2010).

    Article  Google Scholar 

  42. Dutta, A. et al. CO2 electrolysis—complementary operando XRD, XAS and Raman spectroscopy study on the stability of CuxO foam catalysts. J. Catal. 389, 592–603 (2020).

    Article  Google Scholar 

  43. Jiang, S., Klingan, K., Pasquini, C. & Dau, H. New aspects of operando Raman spectroscopy applied to electrochemical CO2 reduction on Cu foams. J. Chem. Phys. 150, 041718 (2019).

    Article  Google Scholar 

  44. Gunathunge, C. M. et al. Spectroscopic observation of reversible surface reconstruction of copper electrodes under CO2 reduction. J. Phys. Chem. C 121, 12337–12344 (2017).

    Article  Google Scholar 

  45. Toma, F. M. et al. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes. Nat. Commun. 7, 12012 (2016).

    Article  Google Scholar 

  46. Uekert, T., Pichler, C. M., Schubert, T. & Reisner, E. Solar-driven reforming of solid waste for a sustainable future. Nat. Sustain. 4, 383–391 (2021).

    Article  Google Scholar 

  47. Bhattacharjee, S. et al. Photoelectrochemical CO2-to-fuel conversion with simultaneous plastic reforming. Nat. Synth. 2, 182–192 (2023).

    Article  Google Scholar 

  48. Nguyen, T. N. & Dinh, C.-T. Gas diffusion electrode design for electrochemical carbon dioxide reduction. Chem. Soc. Rev. 49, 7488–7504 (2020).

    Article  Google Scholar 

  49. Allam, N. K. & Grimes, C. A. Electrochemical fabrication of complex copper oxide nanoarchitectures via copper anodization in aqueous and non-aqueous electrolytes. Mater. Lett. 65, 1949–1955 (2011).

    Article  Google Scholar 

  50. Lu, H. et al. Single-source bismuth (transition metal) polyoxovanadate precursors for the scalable synthesis of doped BiVO4 photoanodes. Adv. Mater. 30, 1804033 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission with a Horizon 2020 Marie Skłodowska-Curie Individual European Fellowship (SolarFUEL, GAN 839763, M.R.), the Cambridge Trust (Vice-Chancellor’s Award to V.A., Cambridge Thai Foundation Award to C.P., HRH Prince of Wales Commonwealth Scholarship to S.B.), the Winton Programme for the physics of sustainability and St John’s College (Title A research fellowship to V.A.), the EPSRC (EP/L015978/1, EP/L027151/1, D.W., J.J.B., E.R.), the Swiss National Science Foundation (Early Postdoctoral Mobility fellowship P2EZP2-191791, E.L.) and the Austrian Science Fund (FWF, Schrödinger Fellowship J-4381, C.M.P). Access to the Cambridge XPS system, part of the Sir Henry Royce Institute-Cambridge equipment (EPSRC grant EP/P024947/1) and funding for TEM (EPSRC Underpinning Multi-User Equipment Call, EP/P030467/1) are gratefully acknowledged. We thank C. M. Fernández-Posada for assistance with the XPS and S. Kar and Y. Liu (University of Cambridge) for their valuable feedback on the paper.

Author information

Authors and Affiliations

Authors

Contributions

M.R. and E.R. designed the project. M.R. developed the bimetallic catalyst, assembled the artificial leaf devices and performed all the (photo)electrochemical experiments. V.A. prepared and characterized the perovskite and BiVO4 light absorbers and made the supplementary video. D.W. performed the operando Raman experiments. E.L. carried out the DFT calculations. C.P. assisted with oxygen analysis and schematic diagrams. S.B. and C.M.P. assisted with the catalyst characterization and analytics. H.F.G. helped with electron microscopy analyses. J.J.B provided insights in Raman measurements. M.R. and E.R. collectively wrote the paper with input from all co-authors. E.R. supervised the work.

Corresponding author

Correspondence to Erwin Reisner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Kazuhiro Takanabe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–31, Tables 1–5 and References.

Supplementary Video 1

Evolution of gaseous products from photoanode and photocathode sides of a standalone artificial leaf under solar irradiation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahaman, M., Andrei, V., Wright, D. et al. Solar-driven liquid multi-carbon fuel production using a standalone perovskite–BiVO4 artificial leaf. Nat Energy 8, 629–638 (2023). https://doi.org/10.1038/s41560-023-01262-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01262-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing