Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of the phase evolution of kesterite by tuning of the selenium partial pressure for solar cells with 13.8% certified efficiency

Abstract

The control of the phase evolution during the selenization of kesterite Cu2ZnSn(S,Se)4 (CZTSSe) is crucial for efficient solar cells. Here, we regulate the phase-evolution kinetics of Ag-alloyed CZTSSe by applying a positive pressure in the reaction chamber at the initial stage of the annealing process. The partial pressure of Se decreases, reducing the collision probability between selenium molecules and the kesterite precursor during the initial formation of the crystals. This results in the precursor transforming into CZTSSe in a single step, without the formation of secondary phases. CZTSSe forms at relatively higher temperature than conventional methods, leading to high-crystallinity kesterite films with fewer defects. We demonstrate solar cells with a total area efficiency of 14.1% and a certified total area efficiency of 13.8%. This work provides insights into the selenization mechanism and phase evolution of kesterite absorbers, enabling efficient solar cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The method to regulate the kinetic process of phase evolution and the resulting solar cell performance.
Fig. 2: Influence of chamber pressure on the kinetic process of phase evolution.
Fig. 3: Influence of chamber pressure on kesterite morphology.
Fig. 4: Surface state and defect properties.
Fig. 5: Performance of photovoltaic devices.

Similar content being viewed by others

Data availability

All data generated or analysed in this study are included in the published article, its Supplementary Information and Source data files. Source data are provided with this paper.

References

  1. Gong, Y. et al. Elemental de-mixing-induced epitaxial kesterite/CdS interface enabling 13%-efficiency kesterite solar cells. Nat. Energy 7, 966–977 (2022).

    Article  Google Scholar 

  2. Bourdais, S. et al. Is the Cu/Zn disorder the main culprit for the voltage deficit in kesterite solar cells? Adv. Energy Mater. 6, 1502276 (2016).

    Article  Google Scholar 

  3. Kumar, M., Dubey, A., Adhikari, N., Venkatesan, S. & Qiao, Q. Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells. Energy Environ. Sci. 8, 3134–3159 (2015).

    Article  Google Scholar 

  4. Gong, Y. et al. Sn4+ precursor enables 12.4% efficient kesterite solar cell from DMSO solution with open circuit voltage deficit below 0.30 V. Sci. China Mater. 64, 52–60 (2021).

    Article  Google Scholar 

  5. Gang, M. G. et al. Sputtering processed highly efficient Cu2ZnSn(S,Se)4 solar cells by a low-cost, simple, environmentally friendly, and up-scalable strategy. Green. Chem. 18, 700–711 (2016).

    Article  Google Scholar 

  6. Ge, J. et al. Investigation of Se supply for the growth of Cu2ZnSn(SxSe1−x)4 (x≈0.02–0.05) thin films for photovoltaics. Appl. Surf. Sci. 258, 7844–7848 (2012).

    Article  Google Scholar 

  7. Zhao, Q., Shen, H., Sun, L. & Yang, J. Effect of selenium partial pressure on the performance of Cu2ZnSn(S, Se)4 solar cells. J. Mater. Sci. Mater. Electron. 31, 8662–8669 (2020).

    Article  Google Scholar 

  8. Kumari, N., Kumar, J. & Ingole, S. Properties of Cu2ZnSnS4 films obtained by sulfurization under different sulfur-vapor pressures in a sealed ambient. Sol. Energy 231, 484–495 (2022).

    Article  Google Scholar 

  9. Yin, K. et al. A high-efficiency (12.5%) kesterite solar cell realized by crystallization growth kinetics control over aqueous solution based Cu2ZnSn(S,Se)4. J. Mater. Chem. A 10, 779–788 (2022).

    Article  Google Scholar 

  10. Márquez-Prieto, J. et al. Impact of the selenisation temperature on the structural and optical properties of CZTSe absorbers. Sol. Energy Mater. Sol. Cells 152, 42–50 (2016).

    Article  Google Scholar 

  11. Xu, X. et al. Efficient and composition‐tolerant kesterite Cu2ZnSn(S, Se)4 solar cells derived from an in situ formed multifunctional carbon framework. Adv. Energy Mater. 11, 2102298 (2021).

    Article  Google Scholar 

  12. Li, J. et al. Defect control for 12.5% efficiency Cu2ZnSnSe4 kesterite thin-film solar cells by engineering of local chemical environment. Adv. Mater. 32, 2005268 (2020).

    Article  Google Scholar 

  13. Yin, X., Tang, C., Sun, L., Shen, Z. & Gong, H. Study on phase formation mechanism of non- and near-stoichiometric Cu2ZnSn(S,Se)4 film prepared by selenization of Cu–Sn–Zn–S precursors. Chem. Mater. 26, 2005–2014 (2014).

    Article  Google Scholar 

  14. Giraldo, S. et al. How small amounts of Ge modify the formation pathways and crystallization of kesterites. Energy Environ. Sci. 11, 582–593 (2018).

    Article  Google Scholar 

  15. Gong, Y. et al. Identifying the origin of the VOC deficit of kesterite solar cells from the two grain growth mechanisms induced by Sn2+ and Sn4+ precursors in DMSO solution. Energy Environ. Sci. 14, 2369–2380 (2021).

    Article  Google Scholar 

  16. Mainz, R. et al. Phase-transition-driven growth of compound semiconductor crystals from ordered metastable nanorods. Nat. Commun. 5, 3133 (2014).

    Article  Google Scholar 

  17. Son, D.-H. et al. Growth and device characteristics of CZTSSe thin-film solar cells with 8.03% efficiency. Chem. Mater. 27, 5180–5188 (2015).

    Article  Google Scholar 

  18. Altamura, G. & Vidal, J. Impact of minor phases on the performances of CZTSSe thin-film solar cells. Chem. Mater. 28, 3540–3563 (2016).

    Article  Google Scholar 

  19. Chernomordik, B. D. et al. Microstructure evolution during selenization of Cu2ZnSnS4 colloidal nanocrystal coatings. Chem. Mater. 28, 1266–1276 (2016).

    Article  Google Scholar 

  20. Hages, C. J., Koeper, M. J., Miskin, C. K., Brew, K. W. & Agrawal, R. Controlled grain growth for high performance nanoparticle-based kesterite solar cells. Chem. Mater. 28, 7703–7714 (2016).

    Article  Google Scholar 

  21. Su, Z. et al. Device postannealing enabling over 12% efficient solution-processed Cu2ZnSnS4 solar cells with Cd2+ substitution. Adv. Mater. 32, 2000121 (2020).

    Article  Google Scholar 

  22. Zhou, J. et al. Regulating crystal growth via organic lithium salt additive for efficient kesterite solar cells. Nano Energy 89, 106405 (2021).

    Article  Google Scholar 

  23. Gong, Y. et al. Ag incorporation with controlled grain growth enables 12.5% efficient kesterite solar cell with open circuit voltage reached 64.2% Shockley–Queisser limit. Adv. Funct. Mater. 31, 2101927 (2021).

    Article  Google Scholar 

  24. Wang, J. et al. Ge bidirectional diffusion to simultaneously engineer back interface and bulk defects in the absorber for efficient CZTSSe solar cells. Adv. Mater. 34, 2202858 (2022).

    Article  Google Scholar 

  25. Jimenez-Arguijo, A. et al. Small atom doping: a synergistic strategy to reduce SnZn recombination center concentration in Cu2ZnSnSe4? Sol. RRL 6, 2200580 (2022).

    Article  Google Scholar 

  26. Son, D.-H. et al. Effect of solid-H2S gas reactions on CZTSSe thin film growth and photovoltaic properties of a 12.62% efficiency device. J. Mater. Chem. A 7, 25279–25289 (2019).

    Article  Google Scholar 

  27. Hernández-Martínez, A. et al. Kinetics and phase analysis of kesterite compounds: influence of chalcogen availability in the reaction pathway. Materialia 24, 101509 (2022).

    Article  Google Scholar 

  28. Mangan, T. C., McCandless, B. E., Dobson, K. D. & Birkmire, R. W. Thermochemical and kinetic aspects of Cu2ZnSn(S,Se)4 thin film growth by reacting Cu–Zn–Sn precursors in H2S and H2Se. J. Appl. Phys. 118, 065303 (2015).

    Article  Google Scholar 

  29. Guo, H. et al. Optimization of the selenization pressure enabling efficient Cu2ZnSn(S,Se)4 solar cells. Sol. RRL 6, 2100778 (2021).

    Article  Google Scholar 

  30. Gang, M. G. et al. Band tail engineering in kesterite Cu2ZnSn(S,Se)4 thin-film solar cells with 11.8% efficiency. J. Phys. Chem. Lett. 9, 4555–4561 (2018).

    Article  Google Scholar 

  31. Jiang, J. et al. 10.3% efficient CuIn(S,Se)2 solar cells from DMF molecular solution with the absorber selenized under high argon pressure. Sol. RRL 2, 1800044 (2018).

    Article  Google Scholar 

  32. Han, J. H. et al. Actual partial pressure of Se vapor in a closed selenization system: quantitative estimation and impact on solution-processed chalcogenide thin-film solar cells. J. Mater. Chem. A 4, 6319–6331 (2016).

    Article  Google Scholar 

  33. Tan, J. M. et al. Understanding the synthetic pathway of a single-phase quarternary semiconductor using surface-enhanced Raman scattering: a case of wurtzite Cu2ZnSnS4 nanoparticles. J. Am. Chem. Soc. 136, 6684–6692 (2014).

    Article  Google Scholar 

  34. Qu, Y., Zoppi, G. & Beattie, N. S. Selenization kinetics in Cu2ZnSn(S,Se)4 solar cells prepared from nanoparticle inks. Sol. Energy Mater. Sol. Cells 158, 130–137 (2016).

    Article  Google Scholar 

  35. Dimitrievska, M. et al. Multiwavelength excitation Raman scattering of Cu2ZnSn(SxSe1−x)4 (0 ≤ x ≤ 1) polycrystalline thin films: vibrational properties of sulfoselenide solid solutions. Appl. Phys. Lett. 105, 031913 (2014).

    Article  Google Scholar 

  36. Yannopoulos, S. N. & Andrikopoulos, K. S. Raman scattering study on structural and dynamical features of noncrystalline selenium. J. Chem. Phys. 121, 1167–1169 (2004).

    Article  Google Scholar 

  37. Su, Z. et al. Fabrication of Cu2ZnSnS4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol–gel route. J. Mater. Chem. A 2, 500–509 (2014).

    Article  Google Scholar 

  38. Suresh, S. & Uhl, A. R. Present status of solution‐processing routes for Cu(In,Ga)(S,Se)2 solar cell absorbers. Adv. Energy Mater. 11, 2003743 (2021).

    Article  Google Scholar 

  39. Gilliland, E. R. Diffusion coefficients in gaseous systems. J. Ind. Eng. Chem. 26, 681–685 (1934).

    Article  Google Scholar 

  40. Li, J. et al. Unveiling microscopic carrier loss mechanisms in 12% efficient Cu2ZnSnSe4 solar cells. Nat. Energy 7, 754–764 (2022).

    Article  Google Scholar 

  41. Si, H. et al. A-site management for highly crystalline perovskites. Adv. Mater. 32, 1904702 (2020).

    Article  Google Scholar 

  42. Dimitrievska, M. et al. Defect characterisation in Cu2ZnSnSe4 kesterites via resonance Raman spectroscopy and the impact on optoelectronic solar cell properties. J. Mater. Chem. A 7, 13293–13304 (2019).

    Article  Google Scholar 

  43. Polman, A., Knight, M., Garnett, E. C., Ehrler, B. & Sinke, W. C. Photovoltaic materials: present efficiencies and future challenges. Science 352, 4424 (2016).

    Article  Google Scholar 

  44. Yan, C. et al. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nat. Energy 3, 764–772 (2018).

    Article  Google Scholar 

  45. Wang, W. et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1301465 (2014).

    Article  Google Scholar 

  46. Shi, J., Li, D., Luo, Y., Wu, H. & Meng, Q. Opto-electro-modulated transient photovoltage and photocurrent system for investigation of charge transport and recombination in solar cells. Rev. Sci. Instrum. 87, 123107 (2016).

    Article  Google Scholar 

  47. Shi, J. et al. From ultrafast to ultraslow: charge-carrier dynamics of perovskite solar cells. Joule 2, 879–901 (2018).

    Article  Google Scholar 

  48. Li, Y. et al. Exploiting electrical transients to quantify charge loss in solar cells. Joule 4, 472–489 (2020).

    Article  Google Scholar 

  49. Heath, J. T., Cohen, J. D. & Shafarman, W. N. Bulk and metastable defects in CuIn1−xGaxSe2 thin films using drive-level capacitance profiling. J. Appl. Phys. 95, 1000–1010 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

Q.M. acknowledges funding from the National Natural Science Foundation of China (grant number U2002216). J.S. acknowledges funding from the National Natural Science Foundation of China (grant number 52222212). H.W. acknowledges funding from the National Natural Science Foundation of China (grant number 51972332). Y.L. acknowledges funding from the National Natural Science Foundation of China (grant number 52172261).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contribution of all authors, and all authors have approved the final version of the manuscript. Q.M., H.X., D.L.: supervision, discussion, writing-review and editing. J.Z. and X.X.: experiments, simulation, characterization, writing-original draft. H.W.: discussion, Se partial pressure and IPCE measurement. J.W., L.L., K.Y., Y.G.: data analyses and discussion. J.S.: discussion, m-TPC/TPV analyses. Y.L.: data analyses.

Corresponding authors

Correspondence to Dongmei Li, Hao Xin or Qingbo Meng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Xiaojing Hao, Fangyang Liu and Jin-Kyu Kang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–8, Figs. 1–27, Tables 1–4 and Refs. 1–6.

Reporting Summary

Supplementary Data

Statistical source data.

Source data

Source Data Fig. 1

Statistical photovoltaic parameters.

Source Data Fig. 5

Unprocessed JV curves and EQE data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Xu, X., Wu, H. et al. Control of the phase evolution of kesterite by tuning of the selenium partial pressure for solar cells with 13.8% certified efficiency. Nat Energy 8, 526–535 (2023). https://doi.org/10.1038/s41560-023-01251-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01251-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing