Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantification of reversible and irreversible lithium in practical lithium-metal batteries

Abstract

Accurate assessment of the reversibility of electrodes is crucial for battery performance evaluations. However, it is challenging to acquire the true reversibility of the Li anode in lithium-metal batteries, mainly because an excessive amount of Li is commonly used. Here we propose an analytic approach to quantitatively evaluate the reversibility of practical lithium-metal batteries. We identify key parameters that govern the anode reversibility and subsequently establish their relationship with the cycle number by considering the mass of active and inactive Li of the cycled Li anode. Using this method, we show that the mass of active Li can be quantitatively distinguished from the mass of inactive Li of the cycled anodes in Amp hour-level pouch cells. This work opens an avenue for accurately assessing degradation and failure in lithium-metal batteries.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Reversibility and irreversibility of a cycled LMA.
Fig. 2: The pathways for key parameter calculation.
Fig. 3: Decoupling and quantifying inactive Li0 and active Li0.
Fig. 4: Resolved irreversibility and reversibility from quantified results.
Fig. 5: Dynamic failure model predicted by qualitative and quantitative analysis.

Data availability

The datasets analysed and generated during the current study are included in the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Article  Google Scholar 

  2. Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2017).

    Article  Google Scholar 

  3. Chen, S. et al. Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-metal batteries. Joule 3, 1094–1105 (2019).

    Article  Google Scholar 

  4. Chen, S., Dai, F. & Cai, M. Opportunities and challenges of high-energy lithium metal batteries for electric vehicle applications. ACS Energy Lett. 5, 3140–3151 (2020).

    Article  Google Scholar 

  5. Fang, C., Wang, X. & Meng, Y. S. Key issues hindering a practical lithium-metal anode. Trends Chem. 1, 152–158 (2019).

    Article  Google Scholar 

  6. Zhang, X., Yang, Y. & Zhou, Z. Towards practical lithium-metal anodes. Chem. Soc. Rev. 49, 3040–3071 (2020).

    Article  Google Scholar 

  7. Weber, R. et al. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 4, 683–689 (2019).

    Article  Google Scholar 

  8. Huang, C.-J. et al. Decoupling the origins of irreversible Coulombic efficiency in anode-free lithium metal batteries. Nat. Commun. 12, 1452 (2021).

    Article  Google Scholar 

  9. Deng, W. et al. Competitive solvation-induced concurrent protection on the anode and cathode toward a 400 Wh kg1 lithium metal battery. ACS Energy Lett. https://doi.org/10.1021/acsenergylett.0c02351 (2020).

  10. Deng, W., Zhou, X., Fang, Q. & Liu, Z. Microscale lithium metal stored inside cellular graphene scaffold toward advanced metallic lithium anodes. Adv. Energy Mater. 8, 1703152 (2018).

    Article  Google Scholar 

  11. Kim, M. S. et al. Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries. Nat. Energy 3, 889–898 (2018).

    Article  Google Scholar 

  12. Adams, B. D., Zheng, J., Ren, X., Xu, W. & Zhang, J. G. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2018).

    Article  Google Scholar 

  13. Xiao, J. et al. Understanding and applying Coulombic efficiency in lithium metal batteries. Nat. Energy 5, 561–568 (2020).

    Article  Google Scholar 

  14. Holtstiege, F., Wilken, A., Winter, M. & Placke, T. Running out of lithium? A route to differentiate between capacity losses and active lithium losses in lithium-ion batteries. Phys. Chem. Chem. Phys. 19, 25905–25918 (2017).

    Article  Google Scholar 

  15. Niu, C. et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nat. Energy 6, 723–732 (2021).

    Article  Google Scholar 

  16. Paul, P. P. et al. A review of existing and emerging methods for lithium detection and characterization in Li-ion and Li-metal batteries. Adv. Energy Mater. 11, 2100372 (2021).

    Article  Google Scholar 

  17. Fang, C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019).

    Article  Google Scholar 

  18. Chen, K.-H. et al. Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 5, 11671–11681 (2017).

    Article  Google Scholar 

  19. Lu, D. et al. Failure mechanism for fast‐charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater. 5, 1400993 (2015).

    Article  Google Scholar 

  20. Xu, S., Chen, K.-H., Dasgupta, N. P., Siegel, J. B. & Stefanopoulou, A. G. Evolution of dead lithium growth in lithium metal batteries: experimentally validated model of the apparent capacity loss. J. Electrochem. Soc. 166, A3456 (2019).

    Article  Google Scholar 

  21. Chandrashekar, S. et al. 7Li MRI of Li batteries reveals location of microstructural lithium. Nat. Mater. 11, 311–315 (2012).

    Article  Google Scholar 

  22. Gunnarsdóttir, A. B., Amanchukwu, C. V., Menkin, S. & Grey, C. P. Noninvasive in situ NMR study of ‘dead lithium’ formation and lithium corrosion in full-cell lithium metal batteries. J. Am. Chem. Soc. 142, 20814–20827 (2020).

  23. Aryanfar, A., Brooks, D. J., Colussi, A. J. & Hoffmann, M. R. Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries. Phys. Chem. Chem. Phys. 16, 24965–24970 (2014).

    Article  Google Scholar 

  24. McShane, E. J. et al. Quantification of inactive lithium and solid–electrolyte interphase species on graphite electrodes after fast charging. ACS Energy Lett. 5, 2045–2051 (2020).

    Article  Google Scholar 

  25. Janakiraman, U., Garrick, T. R. & Fortier, M. E. Lithium plating detection methods in Li-ion batteries. J. Electrochem. Soc. 167, 160552 (2020).

    Article  Google Scholar 

  26. Hsieh, Y.-C. et al. Quantification of dead lithium via in situ nuclear magnetic resonance spectroscopy. Cell Rep. Phys. Sci. 1, 100139 (2020).

    Article  Google Scholar 

  27. Gunnarsdóttir, A. B., Vema, S., Menkin, S., Marbella, L. E. & Grey, C. P. Investigating the effect of a fluoroethylene carbonate additive on lithium deposition and the solid electrolyte interphase in lithium metal batteries using in situ NMR spectroscopy. J. Mater. Chem. A 8, 14975–14992 (2020).

    Article  Google Scholar 

  28. Xiang, Y. et al. Quantitatively analyzing the failure processes of rechargeable Li metal batteries. Sci. Adv. 7, eabj3423 (2021).

    Article  Google Scholar 

  29. Fang, C. et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat. Energy 6, 987–994 (2021).

    Article  Google Scholar 

  30. Bao, W. et al. Quantifying lithium loss in amorphous silicon thin-film anodes via titration-gas chromatography. Cell Rep. Phys. Sci. 2, 100597 (2021).

    Article  Google Scholar 

  31. Zheng, J. et al. Physical orphaning versus chemical instability: is dendritic electrodeposition of Li fatal? ACS Energy Lett. 4, 1349–1355 (2019).

    Article  Google Scholar 

  32. Niu, C. et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4, 551–559 (2019).

    Article  Google Scholar 

  33. Hu, Z. et al. Self-adaptive 3D skeleton with charge dissipation capability for practical Li metal pouch cells. Nano Energy 93, 106805 (2022).

    Article  Google Scholar 

  34. Gao, N. et al. Fast diagnosis of failure mechanisms and lifetime prediction of Li metal batteries. Small Methods 5, 2000807 (2021).

    Article  Google Scholar 

  35. Wood, K. N., Noked, M. & Dasgupta, N. P. Lithium metal anodes: toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior. ACS Energy Lett. 2, 664–672 (2017).

    Article  Google Scholar 

  36. Wang, L. et al. Identifying the components of the solid–electrolyte interphase in Li-ion batteries. Nat. Chem. 11, 789–796 (2019).

    Article  Google Scholar 

  37. Nie, M. et al. Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. J. Phys. Chem. C. 117, 1257–1267 (2013).

    Article  Google Scholar 

  38. Hirota, N. Electron paramagnetic resonance studies of ion pairs. Structures and equilibria in alkali metal naphthalenide and anthracenide. J. Am. Chem. Soc. 90, 3603–3611 (1968).

    Article  Google Scholar 

  39. Zhang, X. et al. Rethinking how external pressure can suppress dendrites in lithium metal batteries. J. Electrochem. Soc. 166, A3639–A3652 (2019).

    Article  Google Scholar 

  40. Yin, X. et al. Insights into morphological evolution and cycling behaviour of lithium metal anode under mechanical pressure. Nano Energy 50, 659–664 (2018).

    Article  Google Scholar 

  41. Louli, A. J. et al. Exploring the impact of mechanical pressure on the performance of anode-free lithium metal cells. J. Electrochem. Soc. 166, A1291–A1299 (2019).

    Article  Google Scholar 

  42. Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. https://doi.org/10.1149/1.1850854 (2005).

  43. Wood, K. N. et al. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci. 2, 790–801 (2016).

    Article  Google Scholar 

  44. Brissot, C., Rosso, M., Chazalviel, J.-N. & Lascaud, S. Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 81, 925–929 (1999).

    Article  Google Scholar 

  45. Chen, X. R. et al. A diffusion‐reaction competition mechanism to tailor lithium deposition for lithium‐metal batteries. Angew. Chem. Int. Ed. 132, 7817–7821 (2020).

    Article  Google Scholar 

  46. Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016).

    Article  Google Scholar 

  47. Liu, Y. et al. Insight into the critical role of exchange current density on electrodeposition behavior of lithium metal. Adv. Sci. 8, 2003301 (2021).

    Article  Google Scholar 

  48. Yamaki, J.-i et al. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J. Power Sources 74, 219–227 (1998).

    Article  Google Scholar 

  49. Wang, S. H. et al. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Adv. Mater. 29, 1703729 (2017).

    Article  Google Scholar 

  50. Liu, F. et al. Dynamic spatial progression of isolated lithium during battery operations. Nature 600, 659–663 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (grant number 52001320, 51872305), ‘Lingyan’ Research and Development Plan of Zhejiang Province (grant number 2022C01071) and China Postdoctoral Science Foundation funded project (grant number 2019TQ0331, 2019M662123). Y.S.M. acknowledges funding support from the Zable Endowed Chair of Energy Technology and the Sustainable Power & Energy Center of UC San Diego. W.D. thanks F. Zhao for helpful discussions about the work; Q. Guo for discussions about mathematical equations; Z. Jiang, Q Han, W. Fang and J. Wang for their help on the pouch cell assembly and tests; and A. Cao, Y. Yu, S. Liu and H. Li for their help on ICP-OES and GC characterizations. W.D. thanks Y. Han for help with GC analysis, Y. Li for Ar-BET characterizations and K. Shen for ICP-OES analysis from the testing centre of NIMTE, CAS.

Author information

Authors and Affiliations

Authors

Contributions

W.D., X.Z., Y.S.M. and Z.L. conceived the concept and the project. W.D. and W.B. performed the analytical procedures and data analysis. W.D. and X.Y. performed the ICP-OES characterizations. W.D., Z.H. and B.H. assembled and tested the pouch cells. W.D., W.B., X.Z., B.Q., Y.S.M. and Z.L. wrote and revised the manuscript. All authors discussed the results and reviewed the manuscript.

Corresponding authors

Correspondence to Xufeng Zhou, Ying Shirley Meng or Zhaoping Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–27, Discussion and Tables 1–12.

Source data

Source Data Fig. 4

Source data for Fig. 4.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deng, W., Yin, X., Bao, W. et al. Quantification of reversible and irreversible lithium in practical lithium-metal batteries. Nat Energy 7, 1031–1041 (2022). https://doi.org/10.1038/s41560-022-01120-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-022-01120-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing