Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances and challenges in understanding the microscopic structure–property–performance relationship in perovskite solar cells

Abstract

The emergence of perovskite photovoltaic technology is transforming the landscape of solar energy. Its rapid development has been driven by the advances in our understanding of the thin-film microstructures of metal halide perovskites and their intriguing correlations with optoelectronic properties, device efficiency and long-term stability. Here we discuss the morphological characteristics of three key microstructure types encountered in perovskites, which include grain boundaries, intragrain defects and surfaces. To reveal detailed structural information of these microstructure types via tailored characterizations is crucial to probe their detrimental, neutral or beneficial effects on optoelectronic properties. We further elaborate the impacts of these microstructures on the degradation modes of perovskites. Representative examples are also presented, which have translated fundamental understandings to achieve state-of-the-art perovskite solar cells. Finally, we call for more attention in probing hidden microstructures and developing high-spatiotemporal-resolution characterizations, as well as harnessing the potential merits of microstructural imperfections, towards an elevated understanding of microstructure–property–performance relationships for the next solar cell advances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Description and progress of PSCs.
Fig. 2: Morphological characteristics of MHP GBs.
Fig. 3: Morphological characteristics of MHP IGDs.
Fig. 4: Morphological characteristics of MHP surfaces.
Fig. 5: Photophysical properties of MHP GBs, IGDs, and surfaces.
Fig. 6: Propagation modes of phase degradation processes at different microstructural features of MHPs.
Fig. 7: Composition-dependent degradation modes of MHPs and impacts on state-of-the-art PSC development.

Similar content being viewed by others

References

  1. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). The first report on the use of MHPs for solar cell applications.

    Article  Google Scholar 

  2. Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Article  Google Scholar 

  3. Heo, J. H. et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photon. 7, 486–491 (2013).

    Article  Google Scholar 

  4. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article  Google Scholar 

  5. Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014).

    Article  Google Scholar 

  6. Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

    Article  Google Scholar 

  7. Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

    Article  Google Scholar 

  8. Yang, W. S. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

    Article  Google Scholar 

  9. Jung, E. H. et al. Efficient, stable and scalable perovskite solar cells using poly (3-hexylthiophene). Nature 567, 511–515 (2019).

    Article  Google Scholar 

  10. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019).

    Article  Google Scholar 

  11. Jeong, J. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021).

    Article  Google Scholar 

  12. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). The first report on the use of MHPs in a thin-film solar-cell-device configuration.

    Article  Google Scholar 

  13. Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021).

    Article  Google Scholar 

  14. Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photon. 8, 506–514 (2014).

    Article  Google Scholar 

  15. Zhou, Y., Zhou, H., Deng, J., Cha, W. & Cai, Z. Decisive structural and functional characterization of halide perovskites with synchrotron. Matter 2, 360–377 (2020).

    Article  Google Scholar 

  16. Zhou, Y., Game, O. S., Pang, S. & Padture, N. P. Microstructures of organometal trihalide perovskites for solar cells: their evolution from solutions and characterization. J. Phys. Chem. Lett. 6, 4827–4839 (2015).

    Article  Google Scholar 

  17. Dunlap-Shohl, W. A., Zhou, Y., Padture, N. P. & Mitzi, D. B. Synthetic approaches for halide perovskite thin films. Chem. Rev. 119, 3193–3295 (2018).

    Article  Google Scholar 

  18. Dai, Z. et al. Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science 372, 618–622 (2021).

    Article  Google Scholar 

  19. Rothmann, M. U. et al. Atomic-scale microstructure of metal halide perovskite. Science 370, eabb5940 (2020). The first atomic-scale observation of MHP thin-film microstructures using scanning TEM.

    Article  Google Scholar 

  20. Kim, M. C. et al. Advanced characterization techniques for overcoming challenges of perovskite solar cell materials. Adv. Energy Mater. 11, 2001753 (2021).

    Article  Google Scholar 

  21. Rothmann, M. U., Li, W., Etheridge, J. & Cheng, Y. B. Microstructural characterisations of perovskite solar cells–from grains to interfaces: techniquells, features, and challenges. Adv. Energy Mater. 7, 1700912 (2017).

    Article  Google Scholar 

  22. Li, W. et al. Subgrain special boundaries in halide perovskite thin films restrict carrier diffusion. ACS Energy Lett. 3, 2669–2670 (2018).

    Article  Google Scholar 

  23. Yun, J. S. et al. Humidity-induced degradation via grain boundaries of HC(NH2)2PbI3 planar perovskite solar cells. Adv. Funct. Mater. 28, 1705363 (2018).

    Article  Google Scholar 

  24. Zong, Y. et al. Continuous grain-boundary functionalization for high-efficiency perovskite solar cells with exceptional stability. Chem 4, 1404–1415 (2018).

    Article  Google Scholar 

  25. Zong, Y., Zhou, Z., Chen, M., Padture, N. P. & Zhou, Y. Lewis-adduct mediated grain-boundary functionalization for efficient ideal-bandgap perovskite solar cells with superior stability. Adv. Energy Mater. 8, 1800997 (2018).

    Article  Google Scholar 

  26. Tang, X. et al. Local observation of phase segregation in mixed-halide perovskite. Nano Lett. 18, 2172–2178 (2018).

    Article  Google Scholar 

  27. Jiang, J. et al. Carrier lifetime enhancement in halide perovskite via remote epitaxy. Nat. Commun. 10, 4145 (2019).

    Article  Google Scholar 

  28. Xiao, X. et al. Benign ferroelastic twin boundaries in halide perovskites for charge carrier transport and recombination. Nat. Commun. 11, 2215 (2020).

    Article  Google Scholar 

  29. Meggiolaro, D., Mosconi, E. & De Angelis, F. Formation of surface defects dominates ion migration in lead-halide perovskites. ACS Energy Lett. 4, 779–785 (2019).

    Article  Google Scholar 

  30. Stecker, C. et al. Surface defect dynamics in organic–inorganic hybrid perovskites: from mechanism to interfacial properties. ACS Nano 13, 12127–12136 (2019).

    Article  Google Scholar 

  31. Li, F. et al. Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. J. Am. Chem. Soc. 142, 20134–20142 (2020).

    Article  Google Scholar 

  32. Zheng, G. et al. Manipulation of facet orientation in hybrid perovskite polycrystalline films by cation cascade. Nat. Commun. 9, 2793 (2018).

    Article  Google Scholar 

  33. Leblebici, S. Y. et al. Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite. Nat. Energy 1, 16093 (2016). An early study on the heterogeneous photovoltaic response on the surface of MHP thin films.

    Article  Google Scholar 

  34. Khanna, R. & Sahajwalla, V. in Treatise on Process Metallurgy (ed. Seetharaman, S.) 287–393 (Elsevier, 2014).

  35. Tennyson, E. M., Doherty, T. A. S. & Stranks, S. D. Heterogeneity at multiple length scales in halide perovskite semiconductors. Nat. Rev. Mater. 4, 573–587 (2019).

    Article  Google Scholar 

  36. Banerjee, S. & Saha, H. Grain boundary effects in polycrystalline silicon solar cells. Solar Cells 28, 77–94 (1990).

    Article  Google Scholar 

  37. Tritscher, P. & Broadbridge, P. Grain boundary grooving by surface diffusion: an analytic nonlinear model for a symmetric groove. Proc. R. Soc. Lond. A 450, 569–587 (1995).

    Article  MATH  Google Scholar 

  38. Zhou, Y., Sternlicht, H. & Padture, N. P. Transmission electron microscopy of halide perovskite materials and devices. Joule 3, 641–661 (2019).

    Article  Google Scholar 

  39. Cai, S. et al. Atomically resolved electrically active intragrain interfaces in perovskite semiconductors. J. Am. Chem. Soc. 144, 1910–1920 (2022). The first study to image the atomic-scale microstructure of IGDs in PSCs.

    Article  Google Scholar 

  40. Song, J., Zhou, Y., Padture, N. P. & Huey, B. D. Anomalous 3D nanoscale photoconduction in hybrid perovskite semiconductors revealed by tomographic atomic force microscopy. Nat. Commun. 11, 3308 (2020). The first 3D imaging of grain boundary networks in MHP thin films.

    Article  Google Scholar 

  41. Ercius, P., Alaidi, O., Rames, M. J. & Ren, G. Electron tomography: a three-dimensional analytic tool for hard and soft materials research. Adv. Mater. 27, 5638–5663 (2015).

    Article  Google Scholar 

  42. Shao, Y. et al. Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy Environ. Sci. 9, 1752–1759 (2016).

    Article  Google Scholar 

  43. Jariwala, S. et al. Local crystal misorientation influences non-radiative recombination in halide perovskites. Joule 3, 3048–3060 (2019).

    Article  Google Scholar 

  44. Rothmann, M. U. et al. Direct observation of intrinsic twin domains in tetragonal CH3NH3PbI3. Nat. Commun. 8, 14547 (2017). The first microscopic observation of twin domains in MHP thin films.

    Article  Google Scholar 

  45. Thind, A. S. et al. Atomic structure and electrical activity of grain boundaries and Ruddlesden–Popper faults in cesium lead bromide perovskite. Adv. Mater. 31, 1805047 (2019).

    Article  Google Scholar 

  46. Cheng, S. Y., Ho, N. J. & Lu, H. Y. Transformation‐induced twinning: the 90° and 180° ferroelectric domains in tetragonal barium titanate. J. Am. Chem. Soc. 89, 2177–2187 (2006).

    Google Scholar 

  47. Li, W. et al. The critical role of composition-dependent intragrain planar defects in the performance of MA1–xFAxPbI3 perovskite solar cells. Nat. Energy 6, 624–632 (2021). The first systematic study on the relationship between IGD characteristics and MHP properties and performance.

    Article  Google Scholar 

  48. Reiche, M. et al. On the electronic properties of a single dislocation. J. Appl. Phys. 115, 194303 (2014).

    Article  Google Scholar 

  49. Xue, J., Wang, R. & Yang, Y. The surface of halide perovskites from nano to bulk. Nat. Rev. Mater. 5, 809–827 (2020).

    Article  Google Scholar 

  50. Doherty, T. A. S. et al. Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases. Science 374, 1598–1605 (2021).

    Article  Google Scholar 

  51. Li, N., Niu, X., Chen, Q. & Zhou, H. Towards commercialization: the operational stability of perovskite solar cells. Chem. Soc. Rev. 49, 8235–8286 (2020).

    Article  Google Scholar 

  52. Kong, J. et al. CO2 doping of organic interlayers for perovskite solar cells. Nature 594, 51–56 (2021).

    Article  Google Scholar 

  53. Kubicki, D. J., Stranks, S. D., Grey, C. P. & Emsley, L. NMR spectroscopy probes microstructure, dynamics and doping of metal halide perovskites. Nat. Rev. Chem. 5, 624–645 (2021).

    Article  Google Scholar 

  54. Dahlman, C. J., Kubicki, D. J. & Reddy, G. N. M. Interfaces in metal halide perovskites probed by solid-state NMR spectroscopy. J. Mater. Chem. A 9, 19206–19244 (2021).

    Article  Google Scholar 

  55. Chen, Y. et al. Surface termination of CsPbBr3 perovskite quantum dots determined by solid-state NMR spectroscopy. J. Am. Chem. Soc. 142, 6117–6127 (2020).

    Article  Google Scholar 

  56. Yuan, J., Bao, H., Liu, H., Wang, S. & Li, X. Mixed solvent atmosphere induces the surface termination state transition of perovskite to achieve matched energy level alignment. Chem. Eng. J. 424, 130508 (2021).

    Article  Google Scholar 

  57. Liu, Y. et al. Atomistic origins of surface defects in CH3NH3PbBr3 perovskite and their electronic structures. ACS Nano 11, 2060–2065 (2017).

    Article  Google Scholar 

  58. Azmi, R. et al. Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022).

    Article  Google Scholar 

  59. Chen, H. et al. Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16, 352–358 (2022).

    Article  Google Scholar 

  60. de Quilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015). The first microstructure–property correlated study revealing the detrimental effects of GBs in MHPs.

    Article  Google Scholar 

  61. Li, W. et al. Direct characterization of carrier diffusion in halide–perovskite thin films using transient photoluminescence imaging. ACS Photon. 6, 2375–2380 (2019).

    Article  Google Scholar 

  62. Yun, J. S. et al. Benefit of grain boundaries in organic–inorganic halide planar perovskite solar cells. J. Phys. Chem. Lett. 6, 875–880 (2015).

    Article  Google Scholar 

  63. Chu, Z. et al. Impact of grain boundaries on efficiency and stability of organic–inorganic trihalide perovskites. Nat. Commun. 8, 2230 (2017).

    Article  Google Scholar 

  64. Pham, H. T., Duong, T., Weber, K. J. & Wong-Leung, J. Insights into twinning formation in cubic and tetragonal multi-cation mixed-halide perovskite. ACS Mater. Lett. 2, 415–424 (2020).

    Article  Google Scholar 

  65. Tan, S. et al. Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 605, 268–273 (2022). The first study that mechanistically revealed the negative impact of regular passivation strategies on the stability of heterointerfaces in PSCs.

    Article  Google Scholar 

  66. Juarez-Perez, E. J. et al. Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. J. Mater. Chem. A 6, 9604–9612 (2018).

    Article  Google Scholar 

  67. Wang, Q. et al. Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy Environ. Sci. 10, 516–522 (2017).

    Article  Google Scholar 

  68. Alberti, A. et al. Pb clustering and PbI2 nanofragmentation during methylammonium lead iodide perovskite degradation. Nat. Commun. 10, 2196 (2019).

    Article  Google Scholar 

  69. Ju, M.-G. et al. Toward eco-friendly and stable perovskite materials for photovoltaics. Joule 2, 1231–1241 (2018).

    Article  Google Scholar 

  70. Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).

    Article  Google Scholar 

  71. Knight, A. J. & Herz, L. M. Preventing phase segregation in mixed-halide perovskites: a perspective. Energy Environ. Sci. 13, 2024–2046 (2020).

    Article  Google Scholar 

  72. Awais, M., Kirsch, R. L., Yeddu, V. & Saidaminov, M. I. Tin halide perovskites going forward: frost diagrams offer hints. ACS Mater. Lett. 3, 299–307 (2021).

    Article  Google Scholar 

  73. Hu, M. et al. Sub-1.4-eV bandgap inorganic perovskite solar cells with long-term stability. Nat. Commun. 11, 151 (2020).

    Article  Google Scholar 

  74. Jena, A. K., Kulkarni, A. & Miyasaka, T. Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036–3103 (2019).

    Article  Google Scholar 

  75. Wang, R. et al. Prospects for metal halide perovskite-based tandem solar cells. Nat. Photon. 15, 411–425 (2021).

    Article  Google Scholar 

  76. Cao, J. & Yan, F. Recent progress in tin-based perovskite solar cells. Energy Environ. Sci. 14, 1286–1325 (2021).

    Article  Google Scholar 

  77. Zhang, F. et al. Advances in two-dimensional organic–inorganic hybrid perovskites. Energy Environ. Sci. 13, 1154–1186 (2020).

    Article  Google Scholar 

  78. Li, H. & Zhang, W. Perovskite tandem solar cells: from fundamentals to commercial deployment. Chem. Rev. 120, 9835–9950 (2020).

    Article  Google Scholar 

  79. Zhou, Y., Poli, I., Meggiolaro, D., De Angelis, F. & Petrozza, A. Defect activity in metal halide perovskites with wide and narrow bandgap. Nat. Rev. Mater. 6, 986–1002 (2021).

    Article  Google Scholar 

  80. Zhou, Y., Yang, M., Pang, S., Zhu, K. & Padture, N. P. Exceptional morphology-preserving evolution of formamidinium lead triiodide perovskite thin films via organic-cation displacement. J. Am. Chem. Soc. 138, 5535–5538 (2016).

    Article  Google Scholar 

  81. Wang, Z. et al. Additive-modulated evolution of HC(NH2)2PbI3 black polymorph for mesoscopic perovskite solar cells. Chem. Mater. 27, 7149–7155 (2015).

    Article  Google Scholar 

  82. Chen, Z., Brocks, G., Tao, S. & Bobbert, P. A. Unified theory for light-induced halide segregation in mixed halide perovskites. Nat. Commun. 12, 2687 (2021).

    Article  Google Scholar 

  83. Kim, D. et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 368, 155–160 (2020).

    Article  Google Scholar 

  84. Jiang, X. et al. Tin halide perovskite solar cells: an emerging thin-film photovoltaic technology. Acc. Mater. Res. 2, 210–219 (2021).

    Article  Google Scholar 

  85. Park, C., Choi, J., Min, J. & Cho, K. Suppression of oxidative degradation of tin–lead hybrid organometal halide perovskite solar cells by Ag doping. ACS Energy Lett. 5, 3285–3294 (2020).

    Article  Google Scholar 

  86. Kubicki, D. J. et al. Local structure and dynamics in methylammonium, formamidinium, and cesium tin(II) mixed-halide perovskites from 119Sn solid-state NMR. J. Am. Chem. Soc. 142, 7813–7826 (2020).

    Article  Google Scholar 

  87. Lin, R. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy 4, 864–873 (2019).

    Article  Google Scholar 

  88. Liu, X. et al. Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure. Nat. Commun. 11, 2678 (2020).

    Article  Google Scholar 

  89. Lin, R. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022).

    Article  Google Scholar 

  90. Kim, M. et al. Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells. Science 375, 302–306 (2022).

    Article  Google Scholar 

  91. Li, X. et al. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434–437 (2022).

    Article  Google Scholar 

  92. Dong, Q. et al. Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness. Nat. Commun. 12, 973 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

Y.Z. acknowledges the start-up grants, the Interdisciplinary Matching Scheme, Initiation Grant—Faculty Niche Research Areas (IG-FNRA) 2020/21 of HKBU, and the Early Career Scheme (no. 22300221) from the Hong Kong Research Grant Council. L.M.H. acknowledges funding from the Engineering and Physical Sciences Research Council (EPSRC) UK, and support from TUM-IAS through a Hans Fischer Senior Fellowship. A.K.-Y.J. thanks the support from the Lee Shau Kee Chair Professorship and the Innovation and Technology Fund (ITS/497/18FP, GHP/021/18SZ). M.S. acknowledges the German Research Foundation (DFG, GRK 2642, SPP 2196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Dominik Kubicki and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Herz, L.M., Jen, A.KY. et al. Advances and challenges in understanding the microscopic structure–property–performance relationship in perovskite solar cells. Nat Energy 7, 794–807 (2022). https://doi.org/10.1038/s41560-022-01096-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-022-01096-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing