Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bifunctional ionomers for efficient co-electrolysis of CO2 and pure water towards ethylene production at industrial-scale current densities

Abstract

Many CO2 electrolysers under development use liquid electrolytes (KOH solutions, for example), yet using solid-state polymer electrolytes can in principle improve efficiency and realize co-electrolysis of CO2 and pure water, avoiding corrosion and electrolyte consumption issues. However, a key challenge in these systems is how to favour production of multicarbon molecules, such as ethylene, which typically necessitates a strong alkaline environment. Here we use bifunctional ionomers as polymer electrolytes that are not only ionically conductive but can also activate CO2 at the catalyst–electrolyte interface and favour ethylene synthesis, while running on pure water. Specifically, we use quaternary ammonia poly(ether ether ketone) (QAPEEK), which contains carbonyl groups in the polymer chain, as the bifunctional electrolyte. An electrolyser running on CO2 and pure water exhibits a total current density of 1,000 mA cm2 at cell voltages as low as 3.73 V. At 3.54 V, ethylene is produced with the industrial-scale partial current density of 420 mA cm2 without any electrolyte consumption.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MEA electrolyser with 0.1 M KHCO3 anolyte.
Fig. 2: MEA electrolyser operated with pure water.
Fig. 3: Effects of ionomer coating on Cu surface towards the CO2RR.
Fig. 4: Synergetic catalytic mechanism of QAPEEK.
Fig. 5: MEA electrolysers with Cu-ionomer GDEs.
Fig. 6: MEA electrolyser using porous Cu–QAPEEK GDE.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and Supplementary Information files.

References

  1. Olah, G. A., Prakash, G. K. & Goeppert, A. Anthropogenic chemical carbon cycle for a sustainable future. J. Am. Chem. Soc. 133, 12881–12898 (2011).

    Article  Google Scholar 

  2. Bushuyev, O. S. et al. What should we make with CO2 and how can we make it? Joule 2, 825–832 (2018).

    Article  Google Scholar 

  3. Whipple, D. T. & Kenis, P. J. A. Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J. Phys. Chem. Lett. 1, 3451–3458 (2010).

    Article  Google Scholar 

  4. Qiao, J., Liu, Y., Hong, F. & Zhang, J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631–675 (2014).

    Article  Google Scholar 

  5. Ren, S. et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367–369 (2019).

    Article  Google Scholar 

  6. Roberts, F. S., Kuhl, K. P. & Nilsson, A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem. Int. Ed. 127, 5268–5271 (2015).

    Article  Google Scholar 

  7. Loiudice, A. et al. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 55, 5789–5792 (2016).

    Article  Google Scholar 

  8. Li, F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nat. Catal. 3, 75–82 (2019).

    Article  Google Scholar 

  9. Lee, S., Kim, D. & Lee, J. Electrocatalytic production of C3-C4 compounds by conversion of CO2 on a chloride-induced bi-phasic Cu2O-Cu catalyst. Angew. Chem. Int. Ed. 54, 14701–14705 (2015).

    Article  Google Scholar 

  10. Zheng, Y. et al. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 141, 7646–7659 (2019).

    Article  Google Scholar 

  11. Perez-Gallent, E. F., Calle-Vallejo, M. C., Koper, F. & Spectroscopic, M. T. Observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew. Chem. Int. Ed. 56, 3621–3624 (2017).

    Article  Google Scholar 

  12. Schouten, K. J. P., Gallent, E. P. & Koper, M. T. The influence of pH on the reduction of CO and CO2 to hydrocarbons on copper electrodes. J. Electroanal. Chem. 716, 53–57 (2014).

    Article  Google Scholar 

  13. Hasa, B., Jouny, M., Ko, B. H., Xu, B. & Jiao, F. Flow electrolyzer mass spectrometry with a gas-diffusion electrode design. Angew. Chem. Int. Ed. 60, 3277–3282 (2021).

    Article  Google Scholar 

  14. Xiao, H., Goddard, W. A., Cheng, T. & Liu, Y. Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc. Natl Acad. Sci. USA 114, 6685–6688 (2017).

    Article  Google Scholar 

  15. Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020).

    Article  Google Scholar 

  16. Mistry, H. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7, 12123 (2016).

    Article  Google Scholar 

  17. Ozden, A. et al. High-rate and efficient ethylene electrosynthesis using a catalyst/promoter/transport layer. ACS Energy Lett. 5, 2811–2818 (2020).

    Article  Google Scholar 

  18. Kim, C. et al. Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bilayer ionomer coatings. Nat. Energy 6, 1026–1034 (2021).

    Article  Google Scholar 

  19. Wagner, A., Sahm, C. D. & Reisner, E. Towards molecular understanding of local chemical environment effects in electro-and photocatalytic CO2 reduction. Nat. Catal. 3, 775–786 (2020).

    Article  Google Scholar 

  20. Gabardo, C. M. et al. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 3, 2777–2791 (2019).

    Article  Google Scholar 

  21. Yan, Z., Hitt, J. L., Zeng, Z., Hickner, M. A. & Mallouk, T. E. Improving the efficiency of CO2 electrolysis by using a bipolar membrane with a weak-acid cation exchange layer. Nat. Chem. 13, 33–40 (2021).

    Article  Google Scholar 

  22. Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  Google Scholar 

  23. Weekes, D. M., Salvatore, D. A., Reyes, A., Huang, A. & Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 51, 910–918 (2018).

    Article  Google Scholar 

  24. Nguyen, T. N. & Dinh, C. T. Gas diffusion electrode design for electrochemical carbon dioxide reduction. Chem. Soc. Rev. 49, 7488–7504 (2020).

    Article  Google Scholar 

  25. De Arquer, F. P. G. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm-2. Science 367, 661–666 (2020).

    Article  Google Scholar 

  26. Endrodi, B. et al. Operando cathode activation with alkali metal cations for high current density operation of water-fed zero-gap carbon dioxide electrolyzers. Nat. Energy 6, 439–448 (2021).

    Article  Google Scholar 

  27. Xu, Y. et al. Self-cleaning CO2 reduction systems: unsteady electrochemical forcing enables stability. ACS Energy Lett. 6, 809–815 (2021).

    Article  Google Scholar 

  28. Perry, M. L. & Fuller, T. F. A historical perspective of fuel cell technology in the 20th century. J. Electrochem. Soc. 149, S59 (2002).

    Article  Google Scholar 

  29. Babic, U., Suermann, M., Büchi, F. N., Gubler, L. & Schmidt, T. J. Critical review—identifying critical gaps for polymer electrolyte water electrolysis development. J. Electrochem. Soc. 164, F387–F399 (2017).

    Article  Google Scholar 

  30. Xiao, L. et al. First implementation of alkaline polymer electrolyte water electrolysis working only with pure water. Energy Environ. Sci. 5, 7869–7871 (2012).

    Article  Google Scholar 

  31. Li, D. et al. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers. Nat. Energy 5, 378–385 (2020).

    Article  Google Scholar 

  32. Lu, S., Pan, J., Huang, A., Zhuang, L. & Lu, J. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc. Natl Acad. Sci. USA 105, 20611–20614 (2008).

    Article  Google Scholar 

  33. Steele, B. C. & Heinzel, A. in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (ed. Dusastre, V.) 224–231 (World Scientific, 2011).

  34. Ge, L. et al. Electrochemical CO2 reduction in membrane-electrode assemblies. Chem. 8, 1–30 (2022).

    Article  Google Scholar 

  35. Monteiro, M. C. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4, 654–662 (2021).

    Article  Google Scholar 

  36. Ringe, S. et al. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12, 3001–3014 (2019).

    Article  Google Scholar 

  37. Zhang, F. & Co, A. C. Direct evidence of local pH change and the role of alkali cation during CO2 electroreduction in aqueous media. Angew. Chem. Int. Ed. 59, 1674–1681 (2020).

    Article  Google Scholar 

  38. Yin, Z. et al. An alkaline polymer electrolyte CO2 electrolyzer operated with pure water. Energy Environ. Sci. 12, 2455–2462 (2019).

    Article  Google Scholar 

  39. Pătru, A., Binninger, T., Pribyl, B. & Schmidt, T. J. Design principles of bipolar electrochemical co-electrolysis cells for efficient reduction of carbon dioxide from gas phase at low temperature. J. Electrochem. Soc. 166, F34–F43 (2019).

    Article  Google Scholar 

  40. Hori, Y. I. in Modern Aspects of Electrochemistry (eds. Vayenas, C. G., White, R. E., & Gamboa-Aldeco, M. E.) 89–189 (Springer, 2008).

  41. Gao, D., Arán-Ais, R. M., Jeon, H. S. & Cuenya, B. R. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2, 198–210 (2019).

    Article  Google Scholar 

  42. Peng, H. et al. Alkaline polymer electrolyte fuel cells stably working at 80 °C. J. Power Sources 390, 165–167 (2018).

    Article  Google Scholar 

  43. Li, Q. et al. The comparability of Pt to Pt-Ru in catalyzing the hydrogen oxidation reaction for alkaline polymer electrolyte fuel cells operated at 80 °C. Angew. Chem. Int. Ed. 58, 1442–1446 (2019).

    Article  Google Scholar 

  44. Gu, S. et al. A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells. Angew. Chem. Int. Ed. 48, 6499–6502 (2009).

    Article  Google Scholar 

  45. Nam, D. H. et al. Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 19, 266–276 (2020).

    Article  Google Scholar 

  46. Sa, Y. J. et al. Catalyst-electrolyte interface chemistry for electrochemical CO2 reduction. Chem. Soc. Rev. 49, 6632–6665 (2020).

    Article  Google Scholar 

  47. Wei, X. et al. Highly selective reduction of CO2 to C2+ hydrocarbons at copper/polyaniline interfaces. ACS Catal. 10, 4103–4111 (2020).

    Article  Google Scholar 

  48. Li, F. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2019).

    Article  Google Scholar 

  49. Nelson, M. R. & Borkman, R. F. Ab initio calculations on CO2 binding to carbonyl groups. J. Phys. Chem. A 102, 7860–7863 (1998).

    Article  Google Scholar 

  50. Fried, J. & Li, W. High‐pressure FTIR studies of gas–polymer interactions. J. Appl. Polym. Sci. 41, 1123–1131 (1990).

    Article  Google Scholar 

  51. Voskian, S. & Hatton, T. A. Faradaic electro-swing reactive adsorption for CO2 capture. Energy Environ. Sci. 12, 3530–3547 (2019).

    Article  Google Scholar 

  52. Liu, Y., Ye, H. Z., Diederichsen, K. M., Van Voorhis, T. & Hatton, T. A. Electrochemically mediated carbon dioxide separation with quinone chemistry in salt-concentrated aqueous media. Nat. Commun. 11, 2278 (2020).

    Article  Google Scholar 

  53. Sandberg, R. B., Montoya, J. H., Chan, K. & Nørskov, J. K. CO-CO coupling on Cu facets: coverage, strain and field effects. Surf. Sci. 654, 56–62 (2016).

    Article  Google Scholar 

  54. Huang, Y., Handoko, A. D., Hirunsit, P. & Yeo, B. S. Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene. ACS Catal. 7, 1749–1756 (2017).

    Article  Google Scholar 

  55. Erlebacher, J., Aziz, M. J., Karma, A., Dimitrov, N. & Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 410, 450–453 (2001).

    Article  Google Scholar 

  56. Wang, Y. et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 3, 98–106 (2020).

    Article  Google Scholar 

  57. Aeshala, L., Uppaluri, R. & Verma, A. Uppaluri, R. & Verma, A. Effect of cationic and anionic solid polymer electrolyte on direct electrochemical reduction of gaseous CO2 to fuel. J. CO2 Util. 3, 49–55 2013)..

  58. Lee, J., Lim, J., Roh, C.-W., Whang, H. S. & Lee, H. Electrochemical CO2 reduction using alkaline membrane electrode assembly on various metal electrodes. J. CO2 Util. 31, 244–250 (2019)..

  59. Li, J. et al. Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis. Nat. Commun. 12, 2808 (2021).

    Article  Google Scholar 

  60. Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    Article  Google Scholar 

  61. Han, J. et al. Highly stable alkaline polymer electrolyte based on a poly(ether ether ketone) backbone. ACS Appl. Mater. Interfaces 5, 13405–13411 (2013).

    Article  Google Scholar 

  62. Zhu, S., Jiang, B., Cai, W. B. & Shao, M. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J. Am. Chem. Soc. 139, 15664–15667 (2017).

    Article  Google Scholar 

  63. Li, Z. et al. Interface-enhanced catalytic selectivity on the C2 products of CO2 electroreduction. ACS Catal. 11, 2473–2482 (2021).

    Article  Google Scholar 

  64. Li, C. W. & Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134, 7231–7234 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

All authors acknowledge funding from the National Natural Science Foundation of China (grant nos. 92045302, 21991150 and 21991154).

Author information

Authors and Affiliations

Authors

Contributions

L.Z. and G.W. conceived and supervised the whole project. W.L., Z.Y. and G.W. made verification of the ideas and carried out the electrochemical experiments. Z.G. and X.W. carried out in situ ATR–SEIRAS measurements. F.W. carried out density functional theory calculations. H.P. and X.H. provided and characterized the materials. Z.L. assisted in data analysis. L.X. and J.L. provided valuable suggestions and assisted in the manuscript writing. L.Z., G.W., Z.Y. and W.L. wrote the paper.

Corresponding authors

Correspondence to Gongwei Wang or Lin Zhuang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Thomas Burdyny, Sichao Ma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Extended data supporting the current study, including Supplementary Methods, Notes 1–5, Figs. 1–48 and Tables 1–11, are all provided in the Supplementary Information.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Yin, Z., Gao, Z. et al. Bifunctional ionomers for efficient co-electrolysis of CO2 and pure water towards ethylene production at industrial-scale current densities. Nat Energy 7, 835–843 (2022). https://doi.org/10.1038/s41560-022-01092-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-022-01092-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing