Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses

Abstract

The photovoltaic industry is dominated by crystalline silicon solar cells. Although interdigitated back-contact cells have yielded the highest efficiency, both-sides-contacted cells are the preferred choice in industrial production due to their lower complexity. Here we show that omitting the layers at the front side that provide lateral charge carrier transport is the key to excellent optoelectrical properties for both-sides-contacted cells. This results in a conversion efficiency of 26.0%. In contrast to standard industrial cells with a front side p–n junction, this cell exhibits the p–n junction at the back surface in the form of a full-area polycrystalline silicon-based passivating contact. A detailed power-loss analysis reveals that this cell balances electron and hole transport losses as well as transport and recombination losses in general. A systematic simulation study led to some fundamental design rules for future >26% efficiency silicon solar cells and demonstrates the potential and the superiority of these back-junction solar cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of notable silicon solar cells.
Fig. 2: Schematic cross-section of different silicon solar cell designs.
Fig. 3: 1-sun IV parameters (in-house measurements) of all the fabricated solar cells.
Fig. 4: PLA of the best-performing solar cells.
Fig. 5: Influence of front surface conductivity on the device performance.
Fig. 6: Simulated electrical PLA together with the power output of different FJ and BJ cells as a function of the c-Si bulk resistivity ρb.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Jäger-Waldau, A. PV Status Report 2019 https://doi.org/10.2760/326629 (2019).

  2. 2.

    Allen, T. G., Bullock, J., Yang, X., Javey, A. & de Wolf, S. Passivating contacts for crystalline silicon solar cells. Nat. Energy 4, 914–928 (2019).

    Google Scholar 

  3. 3.

    Haase, F. et al. Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells. Sol. Energy Mater. Sol. Cells 186, 184–193 (2018).

    Google Scholar 

  4. 4.

    Richter, A. et al. n-type Si solar cells with passivating electron contact: identifying sources for efficiency limitations by wafer thickness and resistivity variation. Sol. Energy Mater. Sol. Cells 173, 96–105 (2017).

    Google Scholar 

  5. 5.

    Yoshikawa, K. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017).

    Google Scholar 

  6. 6.

    Chen, D. et al. 24.58% total area efficiency of screen-printed, large area industrial silicon solar cells with the tunnel oxide passivated contacts (i-TOPCon) design. Sol. Energy Mater. Sol. Cells 206, 110258 (2020).

    Google Scholar 

  7. 7.

    Chen, Y. et al. Mass production of industrial tunnel oxide passivated contacts (i‐TOPCon) silicon solar cells with average efficiency over 23% and modules over 345 W. Prog. Photovolt. Res. Appl. 27, 827–834 (2019).

    Google Scholar 

  8. 8.

    Ru, X. et al. 25.11% efficiency silicon heterojunction solar cell with low deposition rate intrinsic amorphous silicon buffer layers. Sol. Energy Mater. Sol. Cells 215, 110643 (2020).

    Google Scholar 

  9. 9.

    Wu, W. et al. Development of industrial n-type bifacial TOPCon solar cells and modules. In 36th European Photovoltaic Solar Energy Conference and Exhibition https://doi.org/10.4229/EUPVSEC20192019-2BP.1.5 (EU PVSEC, 2019).

  10. 10.

    Haschke, J., Dupré, O., Boccard, M. & Ballif, C. Silicon heterojunction solar cells: recent technological development and practical aspects—from lab to industry. Sol. Energy Mater. Sol. Cells 187, 140–153 (2018).

    Google Scholar 

  11. 11.

    Wolf, S., de, Descoeudres, A., Holman, Z. C. & Ballif, C. High-efficiency silicon heterojunction solar cells. A review. Green 2, 7–24 (2012).

    Google Scholar 

  12. 12.

    Kwark, Y., Sinton, R. A. & Swanson, R. M. Low J0 contact structures using SIPOS and polysilicon films. In 20th IEEE Photovoltaic Specialists Conference 787–792 (IEEE, 1988).

  13. 13.

    Yablonovitch, E., Gmitter, T., Swanson, R. M. & Kwark, Y. H. A 720 mV open circuit voltage SiOx:c-Si:SiOx double heterostructure solar cell. Appl. Phys. Lett. 47, 1211–1213 (1985).

    Google Scholar 

  14. 14.

    Gan, J. Y. & Swanson, R. M. Polysilicon emitters for silicon concentrator solar cells. In 21st IEEE Photovoltaic Specialist Conference https://doi.org/10.1109/PVSC.1990.111625 (IEEE, 1990).

  15. 15.

    Römer, U. et al. Recombination behavior and contact resistance of n+ and p+ poly-crystalline Si/mono-crystalline Si junctions. Sol. Energy Mater. Sol. Cells 131, 85–91 (2014).

    Google Scholar 

  16. 16.

    Feldmann, F., Bivour, M., Reichel, C., Hermle, M. & Glunz, S. W. Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics. Sol. Energy Mater. Sol. Cells 120, 270–274 (2014).

    Google Scholar 

  17. 17.

    Swanson, R. M. Approaching the 29% limit efficiency of silicon solar cells. In 31st IEEE Photovoltaic Specialist Conference https://doi.org/10.1109/pvsc.2005.1488274 (IEEE, 2005).

  18. 18.

    Yamamoto, K., Yoshikawa, K., Uzu, H. & Adachi, D. High-efficiency heterojunction crystalline Si solar cells. Jpn J. Appl. Phys. 57, 08RB20 (2018).

    Google Scholar 

  19. 19.

    Richter, A. et al. Both sides contacted silicon solar cells: options for approaching 26% efficiency. In 36th European Photovoltaic Solar Energy Conference and Exhibition https://doi.org/10.4229/EUPVSEC20192019-2BP.1.3 (EU PVSEC, 2019).

  20. 20.

    Richter, A., Hermle, M. & Glunz, S. W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 3, 1184–1191 (2013).

    Google Scholar 

  21. 21.

    Veith-Wolf, B. A., Schäfer, S., Brendel, R. & Schmidt, J. Reassessment of intrinsic lifetime limit in n-type crystalline silicon and implication on maximum solar cell efficiency. Sol. Energy Mater. Sol. Cells 186, 194–199 (2018).

    Google Scholar 

  22. 22.

    Oberbeck, L., Alvino, K., Goraya, B. & Jubault, M. IPVF’s PV technology vision for 2030. Prog. Photovolt. Res. Appl. 28, 1207–1214 (2020).

    Google Scholar 

  23. 23.

    Zhao, J., Wang, A. & Green, M. A. 24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates. Prog. Photovolt. Res. Appl. 7, 471–474 (1999).

    Google Scholar 

  24. 24.

    Green, M. A., Emery, K., Hishikawa, Y. & Warta, W. Solar cell efficiency tables (version 33). Prog. Photovolt. Res. Appl. 17, 85–94 (2009).

    Google Scholar 

  25. 25.

    Blakers, A. W., Wang, A., Milne, A. M., Zhao, J. & Green, M. A. 22.8% efficient silicon solar cell. Appl. Phys. Lett. 55, 1363–1365 (1989).

    Google Scholar 

  26. 26.

    Dullweber, T. & Schmidt, J. Industrial silicon solar cells applying the passivated emitter and rear cell (PERC) concept—a review. IEEE J. Photovolt. 6, 1366–1381 (2016).

    Google Scholar 

  27. 27.

    Knobloch, J., Aberle, A. & Voss, B. Cost effective processes for silicon solar cells with high performance. in 9th European Photovoltaic Solar Energy Conference and Exhibition 777–780 (EU PVSEC, 1989).

  28. 28.

    Preu, R., Lohmüller, E., Lohmüller, S., Saint-Cast, P. & Greulich, J. M. Passivated emitter and rear cell—devices, technology, and modeling. Appl. Phys. Rev. 7, 41315 (2020).

    Google Scholar 

  29. 29.

    Wilson, G. M. et al. The 2020 photovoltaic technologies roadmap. J. Phys D 53, 493001 (2020).

    Google Scholar 

  30. 30.

    Adachi, D., Hernández, J. L. & Yamamoto, K. Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency. Appl. Phys. Lett. 107, 233506 (2015).

    Google Scholar 

  31. 31.

    Feldmann, F., Reichel, C., Müller, R. & Hermle, M. The application of poly-Si/SiOx contacts as passivated top/rear contacts in Si solar cells. Sol. Energy Mater. Sol. Cells 159, 265–271 (2017).

    Google Scholar 

  32. 32.

    Drießen, M. et al. Simultaneous boron emitter diffusion and crystallization of TOPCon layers via rapid vapour-phase direct doping. In 37th European Photovoltaic Solar Energy Conference and Exhibition https://doi.org/10.4229/EUPVSEC20202020-2BO.2.3 (EU PVSEC, 2020).

  33. 33.

    Wyss, P. et al. A mixed-phase SiOx hole selective junction compatible with high temperatures used in industrial solar cell manufacturing. IEEE J. Photovolt. 5, 1262–1269 (2020).

    Google Scholar 

  34. 34.

    Ingenito, A. et al. A passivating contact for silicon solar cells formed during a single firing thermal annealing. Nat. Energy 3, 800–808 (2018).

    Google Scholar 

  35. 35.

    Tao, Y. et al. Large area tunnel oxide passivated rear contact n-type Si solar cells with 21.2% efficiency. Prog. Photovolt. Res. Appl. 24, 830–835 (2016).

    Google Scholar 

  36. 36.

    Glunz, S. W. et al. The irresistible charm of a simple current flow pattern—25% with a solar cell featuring a full-area back contact. In 31st European Photovoltaic Solar Energy Conference and Exhibition https://doi.org/10.4229/EUPVSEC20152015-2BP.1.1 (EU PVSEC, 2015).

  37. 37.

    Bivour, M., Schröer, S., Hermle, M. & Glunz, S. W. Silicon heterojunction rear emitter solar cells. Less restrictions on the optoelectrical properties of front side TCOs. Sol. Energy Mater. Sol. Cells 122, 120–129 (2014).

    Google Scholar 

  38. 38.

    Kobayashi, E., Nakamura, N., Hashimoto, K. & Watabe, Y. Rear-emitter silicon heterojunction solar cells with efficiencies above 22%. In 28th European Photovoltaic Solar Energy Conference and Exhibition https://doi.org/10.4229/28thEUPVSEC2013-2BP.1.3 (EU PVSEC, 2013).

  39. 39.

    Richter, A. et al. Tunnel oxide passivating electron contacts as full-area rear emitter of high-efficiency p-type silicon solar cells. Prog. Photovolt. Res. Appl. 107, 233506 (2017).

    Google Scholar 

  40. 40.

    Hermle, M., Granek, F., Schultz, O. & Glunz, S. W. Analyzing the effects of front-surface fields on back-junction silicon solar cells using the charge-collection probability and the reciprocity theorem. J. Appl. Phys. 103, 54507 (2008).

    Google Scholar 

  41. 41.

    Bivour, M. et al. Analysis of the diffused front surface field of n-type silicon solar cells with a-Si/c-Si heterojunction rear emitter. Energy Procedia 8, 185–1192 (2011).

    Google Scholar 

  42. 42.

    Watahiki, T. et al. Analysis of short circuit current loss in rear emitter crystalline Si solar cell. J. Appl. Phys. 119, 204501 (2016).

    Google Scholar 

  43. 43.

    Brendel, R., Dreissigacker, S., Harder, N.-P. & Altermatt, P. P. Theory of analyzing free energy losses in solar cells. Appl. Phys. Lett. 93, 173503 (2008).

    Google Scholar 

  44. 44.

    Fell, A. A free and fast three-dimensional/two-dimensional solar cell simulator featuring conductive boundary and quasi-neutrality approximations. IEEE Trans. Electron Devices 60, 733–738 (2013).

    Google Scholar 

  45. 45.

    Fell, A., Schön, J., Schubert, M. C. & Glunz, S. W. The concept of skins for silicon solar cell modeling. Sol. Energy Mater. Sol. Cells 173, 128–133 (2017).

    Google Scholar 

  46. 46.

    Werner, F., Larionova, Y., Zielke, D., Ohrdes, T. & Schmidt, J. Aluminum-oxide-based inversion layer solar cells on n-type crystalline silicon: fundamental properties and efficiency potential. J. Appl. Phys. 115, 73702 (2014).

    Google Scholar 

  47. 47.

    Fossum, J. G. & Burgess, E. L. High‐efficiency p+–n–n+ back‐surface‐field silicon solar cells. Appl. Phys. Lett. 33, 238–240 (1978).

    Google Scholar 

  48. 48.

    Schwartz, R. J., Lundstrom, M. S. & Nasby, R. D. The degradation of high-intensity BSF solar-cell fill factors due to a loss of base conductivity modulation. IEEE Trans. Electron Devices 28, 264–269 (1981).

    Google Scholar 

  49. 49.

    Haschke, J. et al. Lateral transport in silicon solar cells. J. Appl. Phys. 127, 114501 (2020).

    Google Scholar 

  50. 50.

    Lindroos, J. & Savin, H. Review of light-induced degradation in crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 147, 115–126 (2016).

    Google Scholar 

  51. 51.

    Niewelt, T., Schön, J., Warta, W., Glunz, S. W. & Schubert, M. C. Degradation of crystalline silicon due to boron–oxygen defects. IEEE J. Photovolt. 7, 383–398 (2016).

    Google Scholar 

  52. 52.

    Glunz, S. W., Rein, S., Knobloch, J., Wettling, W. & Abe, T. Comparison of boron- and gallium-doped p-type Czochralski silicon for photovoltaic application. Prog. Photovolt. Res. Appl. 7, 463–469 (1999).

    Google Scholar 

  53. 53.

    Meemongkolkiat, V. et al. Resistivity and lifetime variation along commercially grown Ga- and B-doped Czochralski Si ingots and its effect on light-induced degradation and performance of solar cells. Prog. Photovolt. Res. Appl. 14, 125–134 (2006).

    Google Scholar 

  54. 54.

    Herguth, A., Schubert, G., Kaes, M. & Hahn, G. A new approach to prevent the negative impact of the metastable defect in boron doped CZ silicon solar cells. In 4th IEEE World Conference on Photovoltaic Energy Conference https://doi.org/10.1109/wcpec.2006.279611 (IEEE, 2006).

  55. 55.

    Brand, A. A. et al. Ultrafast in-line capable regeneration process for preventing light induced degradation of boron-doped p-type Cz-silicon PERC solar cells. In 33rd European Photovoltaic Solar Energy Conference and Exhibition https://doi.org/10.4229/EUPVSEC20172017-2CO.9.5 (EU PVSEC, 2017).

  56. 56.

    Walter, D. C., Pernau, T. & Schmidt, J. Ultrafast lifetime regeneration in an industrial belt-line furnace applying intense illumination at elevated Temperature. In 32nd European Photovoltaic Solar Energy Conference and Exhibition https://doi.org/10.4229/EUPVSEC20162016-2DO.1.1 (EU PVSEC, 2016).

  57. 57.

    Wilking, S., Beckh, C., Ebert, S., Herguth, A. & Hahn, G. Influence of bound hydrogen states on BO-regeneration kinetics and consequences for high-speed regeneration processes. Sol. Energy Mater. Sol. Cells 131, 2–8 (2014).

    Google Scholar 

  58. 58.

    Walter, D. C., Lim, B. & Schmidt, J. Realistic efficiency potential of next-generation industrial Czochralski-grown silicon solar cells after deactivation of the boron–oxygen-related defect center. Prog. Photovolt. Res. Appl. 24, 920–928 (2016).

    Google Scholar 

  59. 59.

    Cariou, R. et al. III–V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration. Nat. Energy 3, 326–333 (2018).

    Google Scholar 

  60. 60.

    Bush, K. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017).

    Google Scholar 

  61. 61.

    Jošt, M. et al. Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield. Energy Environ. Sci. 11, 3511–3523 (2018).

    Google Scholar 

  62. 62.

    Schulze, P. S. C. et al. 25.1% High‐efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber. Sol. RRL 4, 2000152 (2020).

    Google Scholar 

  63. 63.

    International Technology Roadmap for Photovoltaic 2018 Results (ITRPV, 2019).

  64. 64.

    Yablonovitch, E. & Cody, G. D. Intensity enhancement in textured optical sheets for solar cells. IEEE Trans. Electron Devices 29, 465–476 (1982).

    Google Scholar 

  65. 65.

    Schäfer, S. & Brendel, R. Accurate calculation of the absorptance enhances efficiency limit of crystalline silicon solar cells with Lambertian light trapping. IEEE J. Photovolt. 8, 1156–1158 (2018).

    Google Scholar 

  66. 66.

    Brendel, R. Modeling solar cells with the dopant-diffused layers treated as conductive boundaries. Prog. Photovolt. Res. Appl. 20, 31–43 (2012).

    Google Scholar 

  67. 67.

    Hall, R. N. Electron-hole recombination in germanium. Phys. Rev. 87, 387 (1952).

    Google Scholar 

  68. 68.

    Shockley, W. & Read, W. Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952).

    MATH  Google Scholar 

  69. 69.

    Istratov, A. A., Hieslmair, H. & Weber, E. R. Iron and its complexes in silicon. Appl. Phys. A 69, 13–44 (1999).

    Google Scholar 

  70. 70.

    Walter, J., Tranitz, M., Volk, M., Ebert, C. & Eitner, U. Multi-wire interconnection of busbar-free solar cells. Energy Procedia 55, 380–388 (2014).

    Google Scholar 

  71. 71.

    Richter, A., Benick, J. & Hermle, M. Boron emitter passivation with Al2O3 and Al2O3/SiNx stacks using ALD Al2O3. IEEE J. Photovolt. 3, 236–245 (2013).

    Google Scholar 

  72. 72.

    Green, M. A., Zhao, J. & Wang, A. Recent progress in silicon solar cells. In 1998 Conference on Optoelectronic and Microelectronic Materials and Devices https://doi.org/10.1109/COMMAD.1998.791578 (IEEE, 1998).

  73. 73.

    Wang, A., Zhao, J. & Green, M. A. 24% efficient silicon solar cells. Appl. Phys. Lett. 57, 602–604 (1990).

    Google Scholar 

  74. 74.

    Zhao, J., Wang, A., Altermatt, P. & Green, M. A. Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss. Appl. Phys. Lett. 66, 3636–3638 (1995).

    Google Scholar 

  75. 75.

    Zhao, J., Wang, A. & Green, M. A. 23.5% efficient silicon solar cell. Prog. Photovolt. Res. Appl. 2, 227–230 (1994).

    Google Scholar 

  76. 76.

    Zhao, J., Wang, A., Green, M. A. & Ferrazza, F. 19.8% efficient ‘honeycomb’ textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 73, 1991–1993 (1998).

    Google Scholar 

  77. 77.

    Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 40). Prog. Photovolt. Res. Appl. 20, 606–614 (2012).

    Google Scholar 

  78. 78.

    Green, M. A., Emery, K., King, D. L., Igari, S. & Warta, W. Solar cell efficiency tables (version 20). Prog. Photovolt. Res. Appl. 10, 355–360 (2002).

    Google Scholar 

  79. 79.

    Kinoshita, T. et al. The approaches for high efficiency HITTM solar cell with very thin (<100 µm) silicon wafer over 23%. In 26th European Photovoltaic Solar Energy Conference and Exhibition 871–874 (EU PVSEC, 2011).

  80. 80.

    Maruyama, E. et al. Sanyo’s challenges to the development of high-efficiency HIT solar cells and the expansion of HIT business. In 4th IEEE World Conference on Photovoltaic Energy Conference https://doi.org/10.1109/WCPEC.2006.279743 (IEEE, 2006).

  81. 81.

    Sakata, H. et al. 20.7% highest efficiency large area (100.5 cm2) HITTM cell. In 28th IEEE Photovoltaic Specialists Conference https://doi.org/10.1109/PVSC.2000.915742 (IEEE, 2000).

  82. 82.

    Taguchi, M., Terakawa, A., Maruyama, E. & Tanaka, M. Obtaining a higher VOC in HIT cells. Prog. Photovolt. Res. Appl. 13, 481–488 (2005).

    Google Scholar 

  83. 83.

    Taguchi, M. et al. High-efficiency HIT solar cell on thin (<100 μm) silicon wafer. In 24th European Photovoltaic Solar Energy Conference https://doi.org/10.4229/24thEUPVSEC2009-2CV.2.78 (EU PVSEC, 2009).

  84. 84.

    Taguchi, M. et al. 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt. 4, 96–99 (2014).

    Google Scholar 

  85. 85.

    Taira, S. et al. Our approaches for achieving hit solar cells with more than 23% efficiency. In 22nd European Photovoltaic Solar Energy Conference and Exhibition 932–935 (EU PVSEC, 2007).

  86. 86.

    Cousins, P. J. et al. Generation 3: improved performance at lower cost. In 35th IEEE Photovoltaic Specialists Conference https://doi.org/10.1109/PVSC.2010.5615850 (IEEE, 2010).

  87. 87.

    Smith, D. D. et al. Toward the practical limits of silicon solar cells. IEEE J. Photovolt. 4, 1465–1469 (2014).

    Google Scholar 

  88. 88.

    Smith, D. D. et al. Silicon solar cells with total area efficiency above 25%. In 43rd IEEE Photovoltaic Specialists Conference https://doi.org/10.1109/PVSC.2016.7750287 (IEEE, 2016).

  89. 89.

    Masuko, K. et al. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J. Photovolt. 4, 1433–1435 (2014).

    Google Scholar 

  90. 90.

    Polman, A., Knight, M., Garnett, E. C., Ehrler, B. & Sinke, W. C. Photovoltaic materials: present efficiencies and future challenges. Science 352, aad4424 (2016).

    Google Scholar 

  91. 91.

    Blakers, A. W. & Green, M. A. 20% efficiency silicon solar cells. Appl. Phys. Lett. 48, 215–217 (1986).

    Google Scholar 

Download references

Acknowledgements

We thank S. Seitz, A. Leimenstoll, F. Schätzle, N. Brändlin, A. Seiler, D. Leclerc and H. Steidl for their contributions during the solar cell processing and E. Schäffer and F. Martin for performing measurements. This work was partially supported by the German Federal Ministry for Economic Affairs and Energy under contract no. 03EE1031A (PaSoDoble).

Author information

Affiliations

Authors

Contributions

A.R., R.M., C.R., J.B., M.B. and M.H. conceived the idea. A.R. and J.B. designed the experiment. A.R. coordinated the fabrication of the solar cells, optimized the Al2O3 surface passivation and carried out the data evaluation and simulation study. C.R. and R.M. contributed to the process developments required for the solar cell fabrication. F.F., B.S. and M.H. developed the TOPCon stack. A.F. contributed to the device simulations and interpretation. M.H. and S.W.G. contributed to the definition and presentation of the article contents and organized the research. A.R. wrote the paper, and all the co-authors participated in the discussions and reviewed the manuscript.

Corresponding author

Correspondence to Armin Richter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Energy thanks Jichun Ye and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Tables 1–4.

41560_2021_805_MOESM2_ESM.pdf

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Richter, A., Müller, R., Benick, J. et al. Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses. Nat Energy 6, 429–438 (2021). https://doi.org/10.1038/s41560-021-00805-w

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing